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This work is primarily concerned with finding those statements or observations
from which quantum mechanics can reasonably be said to follow. Within the
context of characterizing quantum mechanics as any probability field (with
bounded probability density) whose associated stochastic velocity field is gover-
ned by a differential equation of first order in time, it is shown that the single
statement required is the stipulation that the superposition principle is satisfied.
This is demonstrated by showing that only the Schrédinger equation is an
acceptable dynamic description for such probability fields if the superposition
principle is to hold.

1. INTRODUCTION

The present work is primarily concerned with characterizing the quan-
tization process; that is, with finding those few physical assumptions which
imply quantum theory as we customarily know it. Of course, there already
exist several developments whose purpose is to somehow characterize
quantum theory. For instance, we have Dirac’s (1947) prescription for
replacing classical Poisson brackets with operator commutators, or von
Neumann’s (1955) method of associating quantum operators with classical
quantities once the operators associated with position and momentum are
assumed. There are other techniques as well, such as those of Weyl (1950),
Rivier (1957), and Yvon (1948). In all these cases, however, we do not have
what one could call a demonstration of quantum mechanics following as
a consequence of certain physical assumptions or observations. In fact,
these approaches in no way give any compelling reason in principle for
believing the Schrodinger equation, nor do they proyide a unified description
of the Schrodinger equation together with the statistical assertions of quan-
tum mechanics. In all this, however, there is an exceptional approach which
does yield the Schrodinger equation and the statistical assertions from a
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unified framework. It is the path integral approach developed by Feynman
(1965). However, in this case we must accept as given the expression for
the contribution to the kernel coming from each constituent classical path;
and this expression follows in no obvious way from more basic observations
or assumptions.

What we are seeking in this work is a succinct set of physical statements
from which quantum mechanics reasonably follows. Within the context of
our characterization of quantum mechanics as any probability field (with
bounded probability density) whose associated stochastic velocity field is
governed by a differential equation of first order in time, we feel that we
have found the single statement needed; it is the requirement that the
equations of the theory satisfy the superposition principle.

In the following presentation this conclusion will be developed in
stages. In Section 2, we make precise the notion of superposition and, in
fact, also discuss linear superposition and what we shall call general linear
superposition as well. The nontrivial result that stochastic classical
mechanics (considered as an inviscid Eulerian probability fluid) does not
satisfy the superposition principle will also be proven here, as a preliminary
to later considerations.

In Section 3 it is shown that any probability field that has a probability
density that is bounded and with a stochastic velocity field (defined by the
continuity equation) that is irrotational and is governed by a differential
equation of first order in time can only satisfy the superposition principle
if the dynamics is, in fact, governed by the Schrédinger equation.

In Section 4 there is a discussion in which the very lengthy preceding
development of Section 3 is summarized and brought into focus, so that
one can see just what has been accomplished.

Finally, in Section 5, it is shown that any probability field of the above
kind, except one whose stochastic velocity field is not irrotational, cannot
be expected to satisfy the superposition principle.

The chief conclusion of all this, then, is that only the Schrédinger
equation is an acceptable dynamic description for probability fields with
bounded probability densities, and with stochastic velocity fields governed
by differential equations of first order in time, if the superposition principle
is mandated. We also add the obvious, which is that once the Schrédinger
equation is established, so, then, is Feynman’s weighting factor and his
“derivation” of the statistical aspects of the theory as well.

2. SUPERPOSITION AND CLASSICAL MECHANICS

In this section we first define what it means for a system of differential
equations to satisfy a superposition principle, linear superposition principle,
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and general linear superposition principle. It will then be demonstrated
that a common stochastic version of classical mechanics does not satisfy
the superposition principle.

2.1. Definitions

Using a nomenclature that will be relevant later, suppose that we have
a system of two partial differential equations in the dependent variables
(fields) r(x, t) and ¢(x, t), where x and ¢ signify position and time, respec-
tively. The equations may involve spatial as well as time differentiations,
of arbitrary order and degree. We say that the system satisfies the superposi-
tion principle if, for every pair of solutions of the system r,(x, 1), ¢,(x, f)
and ry(x, 1), @,(X, t), there is another solution r(x, ), ¢(x, t), where ¢ =
o(r, 12, @1, ¢2) and r=r(ry, 1, 1, ¢,), and where these functions are
independent of the nature of the functions r(x, 1), r.(x, t), ¢,(x, ), and
@s(x, t). [We call the functions @(ry, 12, 1, ¢,) and r(#y, 12, ©1, ¢,) uni-
versal.}

Further, we say that the system satisfies a linear superposition principle
in case there exist variables n = 5(r, ¢) and ¢ = £(r, ¢) (in terms of which
the system of equations can be expressed) which are universal functions of
r and ¢ such that if r;, ¢, and r,, ¢,, and hence r, ¢, are solutions, then
(n1, &) and (7, &) are solutions and n = an,+ Bn,, £ =a& +BE is also
a solution, where n,=n(r, ¢;) and &=E&(r;, ¢;) for i=1,2, and « and 8
are arbitrary, real constants. In particular, we see that if the system satisfies
the linear superposition principle, and if (7, £) is a solution, then so is
(an, af) for any real constant c.

Finally, we say that the system satisfies the general linear superposition
principle in case the system satisfies the linear superposition principle and
also satisfies the property that, whenever (7, £) is a solution, so is (an + BE,
aé—Bn) for any real constants a and .

Some comments about these definitions are in order. We note that if
the system satisfies the general linear superposition principle, then it also
satisfies the other two superposition principles. Further, if the system satisfies
the linear superposition principle, then it satisfies the superposition prin-
ciple. Conventional quantum theory, as we shall elaborate later, satisfies
the general linear superposition principle; classical mechanics satisfies none
of them, and we shall find another mechanics that satisfies the linear but
not the general linear superposition principle.

2.2. Classical Mechanics

We now consider classical mechanics as a stochastic theory and prove
that it does not satisfy the superposition principle. This result, which is
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interesting in itself, will be used to frame the context and formalism for a
later, more general discussion relevant to quantum theory.

We consider an ensemble of noninteracting classical systems, each
system being subject to the same external field V(x). For simplicity let each
system be composed of a single particle. We make the usual continuity
assumptions so that we may speak of the hydrodynamic-like (stochastic)
velocity v(x, t) of this “fluid” in the abstract configuration space of the
ensemble. Assuming that v is irrotational, so that we may put v=m~'Vo
(where m is the mass of the particle) for some scalar function ¢, we assume
that the ensemble is described by the dynamic equation

dv
—=-VV 1
m-— (1)
as well as the continuity equation
V- (rVe)+mr’=0 (2)

where r’(x, t) is the probability density of the replicas in configuration
space. We note that equation (1) is merely Newton’s law for a single particle,
since in the present case v is both the single-particle velocity and the
stochastic velocity field, which assures conservation of system number via
equation (2).

Using the relation v=m~'V¢, we can reexpress (1) as

(Vo)?
2m

where the form here (but not its content) is the same as the Hamilton-Jacobi
equation of classical mechanics. Equations (2) and (3) comprise our descrip-
tion of stochastic classical mechanics (which is the same as that of an
Eulerian fluid).

We are interested in investigating these two equations in relation to
the superposition principle because this provides us a way of introducing
an approach which will be very useful later when discussing the same
problem for the equations of quantum mechanics, to which the above
equations are very similar.

We assume then that the superposition principle holds for this system
and investigate some of the consequences. We shall find that this leads to
contradictions, forcing the conclusion that the superposition principle can-
not hold for this system after all.

Consider equations (2) and (3) with any two solutions (r,, ¢,), (72, ¢2).
Let ¢ = ¢(ry, 1y, 01, ¢2), r=r(r, 12, ¢1, ;) be another solution, where ¢
and r are universal functions. Then we can write

Vo=a, Vo, +8;Vr; e.=a;p B, (4)

+ V:'_QD,r (3)
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and
Vr=AVe,+BVr; r,z=Ai‘Pi,r+Biri,x (5)

where the summation convention is used throughout, the summation being
from 1 to 2, and a; =d¢/d¢;, ..., etc.
Substituting these expressions into equations (2) and (3) gives

Ve, Vo0, +Vr- VBB +2V ¢, - Va8 +2mV = —2m (a0, + Biti,)

(6)
and
o,V +BV°ri+Va; Vo, +VB;- Vr,)
+2(a;Vo;+B:Vr) - (AVe,+BVr)
+2m(A;p; .+ Bir;,) =0 (7)

Now, in equation (6), which is all we shall need for present consider-
ations, we reexpress ¢,, and r;, on the right-hand side in terms of spatial
derivatives via equations (2) and (3), giving, after collecting terms,

Vo,: V¢j{aiaj _ai5ij}+vri' V'}'Biﬁj
+Vo;- V"j{zaiﬁj _2ﬁf5ij}_3iriV2‘Pi +2mV(l~oa;,~a,)=0 (8)

As a consequence of superposition, this equation must hold for all functions
r; and ¢;; also, the a; and B; must be universal functions of their arguments.

Now, choosing ¢,, ¢,, 1, and r, to all be constants (at a given t), we
find that

a1+a2:1 (9)

when V # 0. But since the «; are universal functions, this relation must be
valid in general (i.e., even when V=0).
Rewriting equation (9) as

d ad

£ -2 (10)

9 dea
we see that

o=@ +f(r, r2, 01, ¢2) (11)
for some function f (this very weak statement will lead to one of content
presently).
Therefore, we have that
a a
__f+_£ =( (12)

9p; dpa
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which, in turn, implies that

f=f(r, rn,e:—¢y) (13)

yielding the relation ¢ = ¢, +f(r, 1, 02— @)
Again returning to equation (8) and this time choosing ry, r,, and ¢,
as constants and V¢, as a constant vector (all at a given t), we get the relation

a%:al (14)

from which we conclude that &, =0 or 1. In the same way, choosing r,, 7,
and ¢, as constants and V¢, as a constant vector yields the result that «, =0
or 1. From equation (9) this means that either ¢, =1, a,=0o0ra; =0, a,=1.
Now, a,=0 implies that f=f(r,, r,), which implies that ¢ = ¢, +f(r,, r»).
But by symmetry we must also have ¢ = ¢,+ g(r,, r,) for some function g,
which then implies that ¢, —¢,=f(r, r,) —g(r,, r2). But this cannot be,
since ¢, and ¢, are independent of r, and r,. Choosing «, =0 leads again
to the same difficulty. ,

So we see that the stochastic form of classical mechanics considered
does not satisfy the superposition principle.”

3. SUPERPOSITION AND CONVENTIONAL QUANTUM THEORY

In this section we consider the constraint placed on any conceivable
quantum theory by the superposition principle as defined earlier. More
specifically, we shall prove that the only quantum theory possible, whose
stochastic velocity field (to be defined shortly) is irrotational and is governed
by a differential equation of first order in time, has a bounded probability
density, and satisfies the superposition principle, is that described by the
customary Schrodinger equation. In this connection, we describe the quan-
tum theory as conventional if its stochastic velocity field is irrotational.

We begin by constructing the form of the most general conventional
quantum theory possible. In the usual way we envisage a set of noninteract-
ing replicated systems (each consisting of just one point particle in an
external field, for simplicity) forming our sample space. Let r*(x, t) denote
the observed density of measured positions at time ¢ (assuming no prior
measurements). Then we (nonuniquely) define the stochastic velocity v(x, t)
by the requirement that, for given r’(x, t), v assures conservation of the
number of systems. That is, v satisfies the continuity equation

V- (rv)+r=0 (15)
for all x, ¢

It is also known, of course, that customary Newtonian mechanics does not satisfy the
superposition principle. But this fact does not seem to be simply related to the result in this
paper for stochastic classical mechanics.
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For any given r(x, t) it is easy to show that there exists such a v (in
fact, infinitely many).> We furthermore assume that v is irrotational, and
we write

v=—Vo (16)
m

where m is the mass of the one-particle system being considered, and ¢(x, ¢)
is some scalar function.
Now, we assume that

dv
m—=B ~ 17
& (17)
where B is a vector field somehow depending on the system state (see below)
under consideration (but not depending on time derivatives of the state).*
In general, we may write

B=VO+VxA (18)

for some scalar function Q and vector field A. We expect that for each
system state [i.e., specification of ¢(x,t) and r*(x, t)]Q and A will be
different.

From the irrotationality of v, equation (17) then yields the relation

1
V[a,¢+—(V¢>)2}=VQ+VxA (19)
2m

And if the fields are such that they all vanish at infinity (say, for certain r
and ¢) we can then conclude (for such states) that

a,¢+51—(v¢>)2=9 and VxA=0 (20)
m

Here, we certainly expect that Q) is a scalar function of the system state,
i.e., of r, ¢, and their spatial derivatives. If this were not so, then the equation
would have different forms for different states, which possibility we reject.
Moreover, {) must be invariant under rotations and coordinate inversions;
this is obviously so when V =0 and, in order for the equations to always
have the same form even in external fields, must also be so when V#0.
Also, since the above equation is to have the same form for all possible

3For example, the expression

1 2 gy
vix, 1) = er" X

4mr? Ix'— x|

is easily shown to satisfy the continuity relation for any specified r(x, t). Further, we may
add on any solenoidal field/r? to the right-hand side here and still have a suitable v.
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states (Whether or not the fields vanish at infinity), the above form is generally
valid.

Now, explicitly allowing for the presence of an external field V(x), we
write () = —I" — V(x), so that our description is governed by the two equations

Te) |y V(Y 2=
o =0, (r'Veo)+mr,=0 (21)

where I is an invariant dependent on the system state.
The first equation above will be referred to as the dynamic equation.
Having in mind a proof in stages, we momentarily restrict I' to the form

T=F(re)+uVe -Vr+v Ve -Vo+nVr-Vr+o Vr+A Ve (22)

where the coefficients u, v, 7, o, and A are functions of only r and ¢. We
further require that the scalar function F(r, ¢ ) is defined in the neighborhood
of r=0, since otherwise the above equation becomes singular there. The
above expression for I' is the most general invariant form possible involving
derivatives through second order and degree. Later, the restriction on I as
to order and degree will be dropped.

Continuing, we first will show that the requirement that these equations
satisfy the superposition principle and also have a bounded probability
density drastically limits I". In fact, we will show that, of the various
coefficients in I', only ¢ does not thereby vanish, and its form is uniquely
determined, so that the pair of equations (21) become equivalent to the
Schridinger equation. Second, we shall show that all this remains true even
if the restriction on I' is dropped.

Before beginning, we stress an important point about the form of the
first of equations (21) [and thereby also about equation (17)]. In writing
the equation this way we mean that the term (V¢)?/2m should survive; i.e.,
no term in " can cancel it out. This means that the coefficient » in I cannot
equal —1/2m. This must be so, since otherwise equation (17) is replaced
by or reduced to the form 9,9 =(; and v itself has then ceased to be a
fundamental quantity.

3.1. Equations of Superposition

We now require that equations (21) satisfy the superposition principle.
For this we use exactly the same approach that we used with the classical
stochastic theory discussed in Section 2, namely we consider two solutions
(ry, ) and (r,, ¢,) and we require that there exists another solution (r, ¢),
where r=r(r,, r,, ¢, ¢>) and ¢ = @(r,, 12, ¢,, ©,), and where r and ¢ are
universal functions of their arguments. We are to recall that each solution



Superposition and Quantum Mechanics 837

(r1, 1), (12, @-) satisfies equations of exactly the same form as (21) and
with the same coefficients u, », 7, o, and A, but of the arguments (r,, ¢,)
or (r,, ¢,), respectively. Again, we have equations (4) and (5) relating the
solutions. Then inserting the expressions from (4) and (5) into (21) and
then, as in Section 2, reexpressing the ¢;, and r;, terms on the right-hand
side here back in terms of spatial gradients, we obtain the following relations
coming from the dynamic and continuity equations, respectively (using the
summation convention)

Veoi Vo, +Vr - VrB;+ Ve, Vi€, +2mV(1—a, ~ay)

2
+V2¢i@i+vzrigi+F(ra ©)=Y a;F(r, ¢;)=0 (23)
1
where
A, da;
&f,-jEaiaj+2mA,-j+2ma-—+2m/\—a—ai3ij“2m‘1i”i5ij (24)
agp; ¢;
Ay = pay At vasop+ nAA; (25)
BB <] i
%‘,-jEBiBj+2mc,»j+2ma——'+2m/\—'3——2ma,—n,-6,»j (26)
ar; ar;
¢y = upPiB;+ vB:B;+ nB:B; (27)
dA; da; 9B,
Gy =208, +2mB, + 2mo =+ 2mA =4 2o =
ar; ar; de;
3B,
+2m)\a——2maiyi8ij—2ﬁi5i]— (28)
(2
B;=pa;B;+up;A;+2a;8;v+29A;B; (29)
@,-EZm(U'A,-'F)\a,-)—Zma,-/\,-—B,-r,» (30)
%p;EZm(ch,--i-)\Bi—a,ﬂ,-) (31)
and where
vi=v(r, ¢;), =01, @), .. (32)
Further,

Vo,  Voa,;,+Vr - Vb +Ve, Vre; — V(A T Ay)
+V20,d; +Vrf,=0 (33)



838 Cohn

where
a,.,.s—z—r; ggﬁ%aiAfﬁAisij—Aiuiaij (34)
b,-js—2—:; %%+—rlr—’3i3j—Aini5ij (35)
ey=5 %%47% g—%#%a,.B,.+i3in—AiMiaij—-1n;B,.ai,. (36)
d,-sg:; a,-—A,-)t,»—z—ln; Bir, (37)
fi=5 B A (38)

We now consider consequences of, first, the dynamic implication,
equation (23), and then the continuity implication, equation (33), using the
same technique for each. Turning to equation (23), we first choose all the
r;, ¢; to be constants (at a given t) as well as V=0, which gives us a universal
relation between F and the F;. Then, allowing V0 and again choosing
all the r;, ¢; as constants implies that the coefficient of the term containing
2mYV is zero. Again choosing r;, ¢, to be constants and V¢, to be a constant
vector (all at a given 1) implies that the coefficient of the term containing
Ve, - Vo, is zero. Continuing on in this way, since the coefficients of the
various gradient terms are universal functions, we see that we can ultimately
set each coefficient (or its symmetric sum) to zero, yielding these universal
equations:

Ay =0, i=1,2 (39)

sty +sd; =0, i#] (40)
B; =0, i=1,2 (41)
B+ %j,- =0, i#j (42)
6;,=0 all i, j (43)
a,ta,=1 (44)
@,=0, i=1,2 (45)

€, =0, i=1,2 (46)

F=Y a;F; (46")

1
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Since it can be shown that equation (43) is a consequence of all the
others, we have 11 differential equations plus one algebraic equation here
to content with.*

Again, using exactly the same considerations on equation (33) we
obtain the additional equations

a; =0, i=1,2 (47)
a;+a; =0, i#j (48)
b;=0, i=1,2 (49)
by+b;=0, i#j (50)
e;=0, alli,j (51)
A+A,=0 (52)
di=0, i=1,2 (53)
fi=0, i=1,2 (54)

And here, since it can again be shown that equation (51) is a con-
sequence of the other equations, we have 11 additional equations, for a
total of 22 differential and one algebraic equation to be considered as
characterizing the superposition principle. These 23 equations comprise the
superposition equations, and the rest of this section will be devoted to their
consequences.

3.2. Consequences of the Equations

In a fairly systematic manner we now consider the consequences of
the above superposition equations.

To begin with, we can say something of the dependence of r and ¢ on
¢, and ¢,, as follows. From equation (52) we have that

a ar
oAV (55)
d¢; 02
which implies that
r=r(r,r, e2—¢;) (56)
Again, from equation (44) we have that

d d
L (57)
dp; 9,

“The equations %,;=0 and .¢;; =0, both for all 4, j, can be shown tobea consequence of the
other 20 (differential) superposition relations in this sense: Later in this section it will be
shown that 4 =A =7 =v =0 as a consequence of the above 20 relations; and at this time it
will then be straightforward to show that €,;=0 and e; =0 must also be true.
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which implies, by an integration, that

o=@t f(r,r, ¢, ¢) (58)
for some function f. But we easily see that
9 8
oL -
9@y 9@,
which implies that f'=f(r,, s, 2—¢,), so that we have
¢ =@t f(r, r, 02— ¢1) (60)

This also implies that all the quantities «;, B;, A;, and B; depend on ¢, and
¢, through the combination ¢,— ¢,. Equations (56) and (60) will be very
useful in the following discussion.

Now, we can show that the coefficients u, 7, o, A, and » can depend
only on r, as follows. Equation (53) for i =1 implies that

(1/2m)(ra,— Byry)
A,

M=A(r, @)= (61)
But as we have just established, all the quantities on the right-hand side
here depend on ¢, and ¢, as ¢,— ¢;. Further, the right-hand side cannot
depend on r,, since A; does not. This means that equation (61) has the form

A("h,‘Pl):%("l,sz_(Pl) (62)

for some function . But this can only be true if A; = A(r;); and likewise,
A>=A(r,) and A = A(r) (we recall that all the functions A are the same).
Again, equation (54) implies for i =1 that

oy =o0(r, ¢)=1B/2mA, (63)

which implies, since the right-hand side here only depends on r; and ¢, — ¢,
that o, =0(r;); and also, o,=0(r,} and o =0o(r). Again, equation (47)
implies for i =1, and using the same argument, that v, = v(r,), v,= v(r,),
and v =p(r). Likewise, equation (49) implies that n, = n(r,), 1.=n(r),
and n = n(r). Finally, in the same way, equation (41) implies that u, = u(ry),
po=p(rz), and p=pu(r).

Thus, we have u = u(r), n=7(r), A=A(), v=v(r), and o =0(r).

Now, we shall demonstrate that the coefficient o in T' is of special
significance, by proving that if o=0, the superposition principle cannot
hold. We shall do this by assuming that o = 0 and showing that the superposi-
tion equations then lead to a contradiction.

Assuming that o=0 (and therefore that o, =0=0,), we find from
equation (54) that 8, =0=p8,, which implies [from equation (60)] that
o=@, +f(¢,—¢1),0r ¢ = @, +g(¢,— ¢,), for some functions f and g. Before
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proceeding further, we first show that both «, and a, must be nonzero, as
follows. Suppose a; =0; then from the form of ¢ above we conclude that
f=¢&é+c (where ¢ is a constant and ¢(=¢,—¢,), so that o=
01+ (92— @)+ ¢ =@, + c. But by symmetry we must also have that ¢ = ¢, + ¢’
(¢'=const), from which we conclude that ¢, ¢, = const, which is absurd,
since ¢, and ¢, are independent. Hence, we conclude that o, a, # 0. Continu-
ing on, equations (49) imply that (since 8,=0=8,) A;n,=0=A,7,. So
we have A, =0=A,, or n,=0=m,, or both. Assume the former. Then
equation (47) implies that

which in turn yields ¢ = ¢, + C(¢,—¢,)+ D, where C = C(r,, r,) and D =
D(r,, r;). Therefore, a;=1—C and a,= C, where C #0 and C # 1. Now,
equation (40) yields the relation 2a,a,(1+2my) =0, which, since a,a, # 0,
implies that »=—1/2m = const. But this cannot be, by the proviso just
before Section 3.1. Hence, A; =0 = A, is unacceptable. So, now we consider
the possibility n,=0=mn,=7 (together with 8,=0=p8, and o=0, of
course). Now, equation (48) gives the relation
r day

- ——_:__((YIA2+ azA )
m 0@,

and equation (40) yields
day
20 a5 2m(puay Ay + oy A+ 2va a,) +4ma o 0
P2
Combining these two relations then gives

mr—2mA da
s e el {64)
1+2mv de,
where, necessarily, 1+2my # 0. Now, da,/d¢,=0 is impossible, since this
would lead to a;a,=0, which has been shown to be untrue. Hence, we
conclude that

@y oy pmr—2mi
aa1/0§02 1+2m1’

(65)

On the left-hand side here we have a function of (¢, — ¢;) only, and on the
right-hand side a function of r only. This implies that r=r(¢,—¢,). But
this cannot be, since r (when r, =0)=r, contradicts this. Hence, 7, =0=
1n,= 7 is also not possible, and we conclude that if superposition holds,
then we must have o # 0. This also implies that in future discussion division
by o is admissible.
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We will now go through a sequence of developments which will lead
to the fact that » =0, as well as to the functional form of a;, 8;, *, and A,
B;. Beginning with equation (48) we have

g
Pt (@, Ayt o, Ay) =0 (66)
a¢
where £ = ¢,— ¢,. Recalling the definition of the A, we can rewrite this as
du 8 ln r_
a§]+ (2a,=1) (67)

from which we conclude that the functional form of the «; is given by

1 1
a(ry, 1z, €) = h(ry, r)+=
¥ 2
1 1 (68)
ay(ry, 1y, €)= —? h(ry, r2)+5

for some function h(r,, r,). Further, h(ry, r,) = —h(r,, r,).” Next, equation
(47) implies the relation

da, .
3%—‘{’(2&1—1) Y3

which, upon comparison with equation (67), implies that A,v,=0= A,v,.
We have already seen that we cannot have A, =0= A,, so we conclude that

m=r=v=0 (70)

— = A =0 (69)

Next, we obtain the functional form of some other relevant quantities.
From equation (49) we have
1 olnr* 2mA
é_n_'gl_i.*ni m fouihgielior = 0 (71)
or, or, r B, )
Equation (54) imblies that 2m/r)A,/B,= 1/ o;, which, when combined
with the above equation, yields

gy =1 (72)
oary a

1

5We have, by interchanging 1 and 2, that ¢ = ¢, +f(ry, 12, &) = ¢, + f(r3, 1, —£). This implies
that f(rz, 1, =€) =f(r, 1y, £) — £ We have then that ap=1-4f/3¢=h/r*+3, implying that
h/ ¥ =5—{8/3£)f(r1, r;, £). Interchanging 1 and 2 in this equation gives
h(ry,r) 1 1 af(’"u’z, )=_h(”1a"2)

2 —5—3( f)f(r2’ LA 5)_ 9E 2

by the above relation. Thus, we have that h(z,, r;) =—h{(ry, r5).
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which finally gives the relation

Bi=H(r)g(r, &)/r (73)

where In H(r,) = [(n,/ o) dr; [0, =0 implies that H(r;) = const] and where
g(r,, £) is some function of r, and ¢,—¢,. Of course, we similarly have
the relation

Ba=H(r)k(r, &)/1* (74)

where k is some as yet unspecified function. We can use these results to
get the functional form of r* as follows. Again using equation (54), we can
reexpress equation (73) as

H(r)g(r, &) oy or

= 75
2m 2 3¢ (73)
from which we conclude that
H(r)
= G, ) +7 () (76)
1

where G(r,, &)= —] g(ry, &) d¢, and f is some as yet unspecified function.
In a similar way we also find that

2_ H(r,)

 mo(ry)

where K(ry, &)=[k(r,, &) dé and § is another unspecified function.
Further, from equation (54) we see that 8,/ o, = —f3,/ o, which implies that

K = G(o,/a,)H,/ H, [where H;= H(r;)]. Therefore, equation (77) can be
rewritten as

K(r, &)+g(r,r) (77)

r2=H(r1)G

+g (78)
ma(ry)

which, when compared with equation (76), tells us that g = f We can draw

another conclusion from the above relation between K and G. We note that

a(r,) o(ry)

0 Ol =75 K, 8) (19)

This relation can only be true if each side is solely a function of £, since
otherwise it would imply that r, =r,(r,, £), which is untrue, since ry, r,,
and ¢ are independent. So, we can write

a(r)
H(ry)

K(ri, §)= N($) (80)
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for some function N(£). Therefore, we can write the general functional
form of r* as

2 H(r)H(r,)
N ma(r)o(r;)

N(&)+f(r, r) (81)

where, moreover, we now see that f(rl, r2) =f(r2, ri)
We can now turn around and get an even more useful expression for
B;. By differentiating the relation between K and G, we obtain

_o, _4dN_
Hzg_H,k_dg_N(f)

Inserting this into equation (73), we then obtain

__H(rl)H('"z) _H(rl)H(rZ)
o(r)r* T o)’

Bi= N'(§), B N'(§) (82)

We also find for A; =3r/d¢; = +9r/d€ the expressions

__H(r)H(r)

: __HG@)H(r)
2mro(r o (ry) N, Az

" 2mra(r,)o(r,)

1= N'(¢)  (83)
The expressions for B; = gr/dr; are also easy to calculate. We do not bother
to express them here, however.

Thus, we have shown that » =0, and have obtained the general func-
tional forms of a;, 8;, r*, A;, and B,.

We can now use the above expressions for 8; to obtain a differential
relation between o and 7, as follows. From equation (82) we find, by
differentiating with respect to r,, that

r b1 rB T (84)

2m or, _53132‘2—1_11- o, 2 2mﬁla'z

where primes denote differentiation. We also have that

r 9B B r B r B,
—_— ——=—-—B,—— g+ ——= 85
2m or, m- ' 2m oy o 2m o, K (85)

Adding these equations gives

r {9 d 1
5—(_'?‘1"*'&) +”‘(ﬂle+BzBl)
m\dr, dr, m
=EL‘<__'310';+,31172_&‘7’1+§‘2711) (86)
m (o0} o, 00 (451
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Comparing this with (50), we conclude that

(-Lrorrp 2-Broribey ) g (87)
a; T, 0, o1
Now, using the familiar relation B8,/o = —B,/ 0, here gives the result
Lz ) _L(n o) )
O \Oy O, gL\ 04
from which we conclude that, necessarily,
1 I
— (ﬂ-—1> =const=c (89)
o\oc o

And from this we get the equation
o'+eo’-n=0 (90)

which is a Riccati equation relating o and 7. Of special importance here
is the implication that

H=aexp(cjadr) (91)

Next, we proceed to show that u =0. Noting that

A _0Ay 34, 04y day_ b dm day g,
d¢y do, ¢ dey” 0y d¢; 9§ e

we find by subtracting the two equations (39) from each other that
a%—a%+2m(A“——A22)=a1-a2 (93)

since v=0. Now, A,;— A,,=—uA,, which, when inserted into the above
equation, yields uA,=0. Since A, cannot be zero, as already shown, we
conclude that

We now make some considerations that will allow us to conclude that
A =0=17; determine the exact form for o, and ultimately determine the
expression for N(£). We begin with (53). We.insert into this equation the
expression for «,; given in (68), the expression for A; given in (83), and

the expression for B, =ar/dr, found by differentiating (81). Then, multiply-
ing through by r* and collecting terms gives the relation

JZ(E)(Hle_rlleHznl+"1H12H20'§>+)HH1H2 N'(8)
m o0, g0, 010, g0,
1 -~ ry af)
+Hl=f+h—-———|=0
(2f 2 9ry (93)
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for all r,, r,, and & This equation has the form
N(EM(ry, 1)+ N'(E)P(ry, r2) +Q(r1, 1) =0

for all r, r,, and & Differentiating with respect to ¢ gives the relation
N'M+ N"P =0 for all r,, r,, and & Now, if P 0, we may divide through
by P to conclude that N”/ N'=const= A = —~M/ P. This yields the solution
for N(§) as

N(§)=Ce*+D (96)

where C and D are constants. We note that C =0 is unacceptable here,
since it implies that N'=0, which implies that A, =0=A,. However, we
see that, regardless of the sign of A, N —» 00 as A£->00. This is inadmissible,
since it implies that for A(g,—¢,) > (say, for certain choices of £ when
|x| > 00) the function r* increases without limit; i.e., the probability density
is unbounded. So, this solution must be rejected, and we conclude that we
must have that P=0, i.e., that

A=0=A,=A (97)

Continuing, with P =0, we now have to satisfy the simple relation NM +
Q =0. Differentiating this with respect to ¢ then implies that N'M =0,
implying that N'(£)=0 and/or M =0. Now, N'(£)=0 is unacceptable,
since it implies that A; =0= A,. So, we conclude that M =0, which then
also implies that Q= 0. Now, M =0 implies that 1 —r,7,/ o+ roy/0o;, =0.
Combining this relation with (90) gives 1 —cr,o, =0; that is,

o=1/cr (98)
where ¢ ' = const # 0. Furthermore, we now find 5 from (90) to be given by
n=0=mn,=mn, (99)

Collecting our latest results, we have shown that
o=1/cr, n=A=pu=v=0 (100)

as the result of the requirement of superposition, and bounded probability
density. Finally, Q =0 gives the relations
- of 14 of
%f+h_ﬂ_f= ol nd

0 101
2 ar, 2 2 dr, (101)

the second equation following from the first by 1<>2 interchange, and the
already established antisymmetry of h(ry, r,). Adding the two equations
above then gives an equation for f,

h Ez.;.z EZ

f=_

102
2 ar 2 6r2 ( )
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which only informs us that f is homogeneous of degree 2. We do get a
useful result by subtracting the above two equations. This gives a relation

determining h from f as
) u
=—(r1§£— af) (103)
4 ar % or,

3.3. Determining f and N(¥)

We shall now determine f and N(£). We note in this connection that
none of the 22 differential equations of superposition give any further
information onf and N (&), except for essentially equations (39), (41), and
(42).

We begin with (39), which gives us

ai+2ma dA,/de, = a, (104)
from which we obtain
aa,=—=2mo 3A,/d€ (105)

which also follows from (40). From the preceding expressions for «; and
A;, the above equation can be rewritten as
1 B err N'(§)

T (106)

and using (81) for r* here, we finally obtain the relation
2 2 7 N "
T  T

m?

1(72 mo,0o;

- CFy rsz” (107)
Mmoo,

where primes signify derivatives, and the relation is true for all r,, r,, and
& This equation has the form

A(ry, 1) y(€)+ B(ry, r)8(&)+ C(ry, ry)e(§)
+D(r, rz)o(g)"'E(rl,"2):’12(71,’2) (108)

for all ry, ry, & and where y= N? 6= N, e= NN", and 6= N". We now
seek the implications of this relation. Taking derivatives, we have

Ay'+B8'+ Ce'+ D¢’ =0 ’ (109)

forall ry, r,, & Now, y'#0 (since N =0 or N'=0implies that A, =0=A,),
so we have

6 / 1
A+B—-+C +D2-=0 (110)
Y Y
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Another differentiation gives us

6/ ’ AN A4
B(—,) +c(?) +D<6—,> =0 (111)
y Y y

for all ry, r,, & Now, we can easily show that (8'/y') #0, since N'#0 and
N #0. So we can divide the above equation through by this factor. Again
we take derivatives and are then confronted with the equation

(s'/y')']' [e'/w]':
C[(a'/w O Gryy] =° (112)

If the first bracket term here is zero, we get the consequence that
NN"=AN+A,N°+A,

where the A; are constants, and if the second bracket term is zero, we get
the result that

NN"=M,N*+ M, N*+ M; N

where the M, are constants. We cannot have both relations holding, since
that implies that N = const, which implies that N' =0, impuying that A; =0 =
A,. So, we must consider separately the two cases coming from one or the
other bracket being nonzero. Now, if the first bracket term is assumed to
be nonzero, we are forced to the conclusion (after an additional differenti-
ation) that either D=0 or the derivative of the quotient of the brackets is
zero. Now, D =0 implies thath 0 (since ¢ # 0), implying that h = 0, which
yields ;=3 = a,, which is unacceptable, since it implies that N - co with
¢, so that the probability density is unbounded.® We are forced then to the
alternative choice, which can then be shown to imply the relation

N":AIN ”+A2N+A3N2+A4 (113)

SNow, ¢ = ¢, + f(r,, r,, £) and a, = 1 —3f/3¢& Therefore, if a; =1=a, (forall r, r,), 3f /3¢ =1,
implying that f=21&+1(r,, r,) for some function L Then, ¢ =3(¢,+¢,)+1, and then B, =
al/ar, =a function of r,, r,. Therefore, B; = —(cr, H, H,/r*) N'(£) is also a function of r,, r,.
This implies that N'(£)/r? = a function of r;, r,, so we may write r* = p(r,, r,) N'(£) for some
function p(r,, r,). Now we have A, =adr/d¢p, =—(1/2r)p(ry, r;) N"(£). Further, equation (22)
gives oA, = r, B,/2m, implying that A, = —(c’r,r,H, H,/2mr) N(&). Comparing this with the
above expression for A, we conclude that

*rinH H 1
SR N (§) = - pN”
r 2r

implying that N”= AN’ for some constant A, where A#0, since p»> or ¢-»0 is not
permissible, from earlier discussions. So we have N(¢) = ae®¢+b for some constants a and
b, where a cannot be zero, since that would imply that N'(£) =0, whichimplies that A, = 0= A,.
Thus, we have that N(£) >0 as A¢—> 0, giving an unbounded probability density, which we
consider unacceptable.
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where the A; are constants. If, instead, the second bracket term in (112) is
assumed to be nonzero, we face the choice of either C =0 or the derivative
of the inverse ratio of the brackets being zero. C =0 is ruled out, since it
implies that ¢ =0, and the alternative then yields the relation

NN"=S§ N"+S,N+S;N*+8S,

where the S; are constants; and we see that this is really the same as (113),
resulting from the other alternative. Thus we have so far a single possibility,
which we expressas 6 = Aje + A, 8+ Ay y+ Ay, Now, inserting the derivative
of this expression into (109) gives the relation

’

8’
(A+DAy)+(B+DA,) =+(C+DA;) —=0 (114)
Y

£
’yl
since y' # 0. Repeating the previous process, we take derivatives here, giving

!

6 ! AN
(B+DA2)<——,> +(C+DA1)(f—,) =0 (115)
Y Y
We have already established that 8'/y")'# 0, so we obtain the relation, after
one more differentiation, .

(C+DA1)[ —o (116)

(e'/ 7’)’]
&'/yy
Once again we are faced with the alternatives that either (C+ DA,)=0
and/or the bracket term is zero. The first choice can be shown to imply
that f = —¢?r,r»/ A, m. But this implies that [see (103)] h =0, which implies
that a; =3= a,, which has been shown in footnote 6 to be unacceptable.
So, we must have the bracket term vanishing, and this yields the relation
g'= /~\, 8+ f\z v’ for constants f\l, /~\2. Putting this back into (114) then gives,
after one more differentiation, the relation

(B+DA,+ A, C+A A D)(8/y) =0 (117)

Now here we only have one choice, since the bracket term has already been
shown to be nonzero. Then, equating the expression in parentheses to zero
gives the relation

A clrr,
m(c/2m —AZ—A1/~\1)

f= (118)
But this expression for f seems unacceptable, since it apparently implies
that h = 0, which implies that a; =3 = a,. On the other hand, this expression
must be correct, since it is our only choice. Thus, it must be that both
numerator and denominator in the above expression are zero. So, we
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conclude that /~\1 =0 and A,=¢/2m. And we then can write, after an
integration,

8:]&27“{“/&3 (119)
where /12, /13 are constants. In terms of N we then have the relation
NN"= A, N*+A, (120)

as a necessary consequence of equation (104). This, then, is the equation
governing N(¢&). We note that if /L#O, we have a difficult nonlinear
differential equation to solve. However, we are saved from this probiem by
the following consistency consideration. Returning to (108) [from which
(120) followed], we rewrite it by substituting in for € the expressmn given
by (120), which then yields

AN*+ BN+ C(A,N*+A,)+ DN"=h*— (121)

From this we obtain, by another differentiation followed by division by
N'#(0, that

~ NHI
2N(A+CA1)+B+—A7D=0 (122)
One more differentiation and division by N’ then yields the relation
2AA+CA) 1 (N) :
—_— == 123
D N'\N' (123)

since D # 0. From this relation we conclude that both sides must be constant,
which then implies the relation N""= MN'N+SN’, where M and S are
constants. Finally, integrating this expression and multiplying it by N gives

NN”= MN*+SN*+ TN (124)

where 1\71, S, and T are constants. Now, this equation must be consistent
with (120), since it is a consequence of (120) inserted into (108). But this
consistency can only be achieved, as is seen by comparison, if M= 0, T=0,
and A,=0. That is, we must, in fact, have the equation on N(§) as

NN"=aN? (125)
for some constant «. And dividing through by N (which must be nonzero,
as we have seen before) finally gives, as the equation determining N(§),

N’=aN (126)
where it must be that the constant « <0, otherwise we would have an

exponential solution, thereby producing an unbounded probability density.
Thus, we can write

N(&)=acos(vV—a¢+b) _ 127)
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for some constants a and b, as the only possible solution for N(§) compatible
with our requirements. We now have
2= c?Ar,r, cos(V—a g+ b)+ f(r,, 1) (128)

where A= H, H,a/m. _
To complete our determination of f and N(§), we employ one of the
very few equations that so far has not been used, namely the relation

B +2mo 8B,/ar, =0 (129)
coming from (41). Now,
dop A
ﬁ1=a—r‘°—ﬂ\/—smw_g+b) (130)
1
and
’A 14
B, =21, cos(V=aé+b)+— of (131)
Zr 2 8 1'
and
B E) 14
8h__L [ *Ar, cos(vV—a¢+b)+—— f] +————f (132)
ary 4r ary 2r ar,

Putting these expressions into (129) then gives (with k=+v—a£+b) the
relation

M(r,, r)+ P(r,, 1,) cos” k+ Q(r,, ry) cos k=0 (133)
for all r;, r,, and £ where

of 3
M= —aA’m*c’r,—— (—f> r_nf_f (134)

2¢ Brl 87‘1

2,222 M 3.5,
P=aA"m crz—?cArz (135)
of f

= — Ar, =+ A T 136
Q mc rzar1 mc. r,rzar% (136)

Now, choosing k so that cos k =0, gives M = 0. Then dividing the remainder
through by cos k (for cos k # 0) and then differentiating with respect to £
obviously implies that also P=0 and Q=0. Considering Q=0 first, we
have the relations

7f_of af of

s (137)
ar1 ar arz dr,
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the second equation here resulting by replacing (129) with B3+
2mo 3B,/ 3r, = 0. It is not difficult to show that the general solution to these
equations is of the form f = A(r’>+r2)+ Ao, where A and A, are constants.’
Further, from the requirement that r*(r,=0)=r; we see that A,=0 and
A =1. Thus we have

f~=rf+r§ (138)

and f has been determined.
Further, we now have from (103) that

h=3(r1—r3) (139)
and therefore
r r% ("l_r%)
a; 12r2 +3 az=—7+% (140)
and also
r’=c’Arr, cos k+{ri+73) (141)

Next, considering P =10, we obtain the relation
a=c¢/2m (142)
Finally, M =0 yields the relation

L3f 1(af\ \
{——(—j—r) =aA’c’mr; (143)
ary 2\dn

"Briefly, from equation (137) we obtain 6°f/9y* =0, where y = r}. Then we can write f(r;, r,) =
rig(r,)+ h(r,) for some functions g and h. By symmetry we must also have f (ry, )=
rik(r,)+ I(r,) for some k and L. Equating these two expressions gives h(0) = /(0). By separately
placing r, r, to zero we then conclude that

rig(ry) +r3k(0)+ 1(0) = r3k(r,) + rig(6) + h(0)
from which we obtain

g(rz) —g(0} _ k(ry) —k(0)

- 2
r% LY

for all r,, r». So each side of this equation must be a constant, say «, since r,, r, are independent.
If a #0, we have g(r,) = ari+g, and k(r,) = ari+k,. This implies that

F=riari+k)+1(r) = arir}+ kor3+gors+hg

But this does not satisfy the condition that Fbe homogeneous of degree 2 as required by
equation (102), unless a = 0. So we must have a = 0, which then implies, from the above, that
g(r,)=g(0)= goand k(r,) = k(0)= k,. Therefore f = r2ky+ rigy+ h,. Finally, thcreqmrement
that f(rl,rz) f(rz,r,) [see equation (81)] implies that k,=g, and we have fr, )=
go(ri+r3)+hy.
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which, together with f = r2+ r2, gives the result «A%c’m =2, which, in turn,
together with « = ¢/2m, implies that
Ac’=+2 (144)

where we have adjusted the constant b in k so that the possible negative
sign here need not be considered. We now have the relation

1/2
r2=rf+r§+2r1rzcos[(—i> §+bj| (145)
2m

and N(¢) has been completely determined.

Now, expressing ¢ as ¢ =—2m/#”> and using (139) to get the a;, and
using the above expression found for N(¢), which gives the B;, we have,
finally, the following expression for ¢ = @{r,, r;, &) and r=1r(ry, 15, &):

P2~ ¢

rP=ri+ri+2rr,cos (146)
and by an integration
¢ =sin~'{ ra sin(e: — ¢,) }+ (147)
{3+ 3+2n s cos[ (g~ o)/ 1]

where we have redefined ¢, and ¢, by adding arbitrary constants to each,
thereby canceling out the b that would otherwise appear in the argument
of the cosine, and also thereby canceling the additive constant that would
have appeared after ¢, above.

We recognize these equations as just the customary superposition
relations of conventional quantum mechanics.

3.4. The Hyperbolic Solution

As an essential part of the previous development we used the require-
ment that N - 00 with & or N (&)~ e*¢, was not to be allowed, since it leads
to r* - co for certain limiting £; i.e., it leads to an unbounded probability
density. Disallowing such solutions forced us, among other things, to the
customary superposition relations above of conventional quantum
mechanics. It is of interest then to point out that for the choice N(&)=
acosh(é/#), p=v=A=n=0, c=+(#H*/2m)(1/r) (ie., c==+2m/ %>,
and F=const [see (22)], all the 23 equations of superposition are again
satisfied and we have superposition holding, with

2~ @)

r’=r?+r3+2rr, cosh L (148)
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and

r, sinh[ (@, — @)/ #]
{"%“’ r§+2r1 1> cosh[ (¢, — 1)/ h)]}l/z

This “alternative” quantum theory is interesting and, as it turns out, displays
many of the same qualitative features as does conventional quantum theory.
This theory may be said to be characterized by a quantum potential of the
opposite sign to that of conventional quantum theory.

Just as conventional quantum theory may be expressed in terms of the
variables £=r cos(¢/h) andn =rsin(¢/#), thereby yielding the pair of
real differential equations (equivalent to the Schrédinger equation)

¢=sinh_l{ }+¢1 (149)

hZ hZ
(-—i—n;vz-i' V)§=—‘ﬁ am; (—z—mV2+ V)T]‘—‘h&,{-’ (150)

so then can the alternative quantum theory be expressed in terms of the
variables £=r cosh(¢/#) and 7 = rsinh(¢/#), satisfying the equations

h2 . h2 .

(——V2+ V>ﬁ=—h 3.£; (———V2+ V)f=—h am (151)

2m 2m
We then see that both descriptions satisfy the linear superposition principle
as well. However, conventional quantum theory satisfies the general linear
superposition principle, as is easily shown by the substitution ¢+ af = 87,
n - an+ B¢ (for any real «, B), whereas the alternative theory above does
not. We note, of course, that in the alternative theory, r*> occurs for
certain limiting values of & which we regard as inadmissible. However, if
one only uses wavefunctions here with bounded ¢, and therefore ¢, this
problem is averted. We discuss this interesting possibility no further at this
point.

3.5. The Function F(r, ¢)

Before finishing our discussion, we must fully dispose of the function
I'. So far we have accounted only for almost all of its terms. There remains
the matter of the scalar function, F(r, ¢). With regard to F, then, consider
two constituent solutions, where ¢, = ¢, and r, = ¢, where ¢ is very small.
Then (147) implies that ¢ — ¢, = nm, for some integer n. Redefining ¢ with
an additive constant (which changes no physics) allows us to choose ¢ = ¢,
here. Further, (146) gives us r* =~ ri(1+2¢/r,) and thus r = r,(1+ &/ r;). Now,

a1=%[1+(r%—r%)/r2]zl—e/rl, a,=g/r

Looking back we see an ‘additional equation that, so far, has not been
stressed. It is equation (46'),

F(r,@)=a,F(r, ¢.)+ a, F(r;, ¢2) (152)
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For the special case we are now considering, this equation gives

F(r t+e, QDl)z(l_rE)F("l,¢1)+§F(5,¢Pl) (153)

1

Expanding the left-hand side in a Taylor series, we get

oF € £
F(r15¢1)+8_~'~'(1———)F(r1a(Pl)+~F(0, ®1) (154)
ar r n
through first order in &, where we require that F(0, ¢,) is defined as
mentioned earlier [see the discussion after equation (22)]. The above
equation then gives the relation

3F  F_ 1
—==—+—F(0,¢) (155)

ar ron
The solution here is easily found to be

F(ry, ¢1)=Al@)/ ri+ F(0, ¢,) (156)

for some function A(¢,). But this relation implies that, in fact, F(0, ¢,) is
not defined, which violates the basic requirement just mentioned concerning
F. Thus, it must be that A(¢,)=0, implying that F = F(¢g,).

We can now proceed to show that F' cannot even depend on ¢,, as
follows. Choose r,=r, and ¢,— ¢, =¢. Then the superposition relations
already established imply that ¢ = ¢, +¢/2, this being true for any ¢, small
or not [this follows by considering addition of solutions in the form
rexp(iv—ae)]. Now, r; =r, implies that a, =4 = a, (this is acceptable for
particular ry, r,; in contrast to footnote 6), so that (152) now gives, for any
Q1> P2

F(ei+e/2)=3F(@)+3F(p1+e) (157)

Now assume that ¢ is small, and expand terms in a Taylor series through
second-order terms in &. This gives

e oF €?&°F 1 oF &°3°F
F(g)+- —+—==5=F(p))+- e—+— 158
(@1) 200, 8 B‘P% (¢1) 238% 4 890% ( )

which implies that 8°F/d¢3 = 0. Thus, we conclude that
F=Eg,+L (159)
for some constants E and L. Now, equation (152) gives us

Eo+L=a,(Ep,+L)+a,(Ep,+ L) (160)
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which in turn gives
Ep=E(a;01+ as¢;) (161)

If E#0, we conclude that ¢ = a,¢,+ a,¢,=3(¢,+¢,) for all ¢,, ¢,. But
this is unacceptable, since it contradicts (147). Therefore, we must have
E =0, which leaves us with F = const, which is then to be incorporated
into the definition of the potential V.

Very briefly summarizing the discussion in this section, it has been
shown that I" [through terms of second order and degree; see (22)] has
been reduced to the following form as a consequence of the requirement
of superposition and bounded probability density:

1 V3r (162)
cr
where ¢ <0.
Also, the relations ¢ = @(ry, 12, @1, ¢,) and r=r(ry, r», 1, ¢,) have
been shown necessarily to be the well-known superposition relations of
customary quantum theory.

3.6. Additions to I

I is the most general invariant (under coordinate rotations and inver-
sions) through quantities of second order or degree in spatial differenti-
ations that one could have. The question must now be considered as to
whether this choice for I" is too restrictive; i.e., can I be extended to include
quantities of the third or higher order or degree? We shall find that the
requirement of superposition prevents this from being the case. To illustrate
what is involved, we consider the addition of the term

EN 0]
(3x)

3

D)

1

to I, where p = p(r, ¢) is a scalar coefficient. This term is not an invariant
(under coordinate inversion, for example) and therefore, technically, need
not be considered; but it will be, since it is a very simple example of the

point that is to be made. Inclusion of this term in I' will produce an additional
contribution to (23) described by the term

a3¢i
&Py i

pai " C, + BTG, (163)

where the summation on i,j is from 1 to 2; the summation over n is from
0 to 2; the superscripts in parentheses denote differentiations, so that
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aiM=9"a;/3x’+ - - 9x' (summed on j), and a!” = @;; and the C, are con-
stants given by
1 forn=0
C,={2 forn=1
1 forn=2

and p; = p(r;, ¢:).

Now, as a special case, choose all r; = const, ¢, = const, and 3@, /ax' =
const=1vy,. Then the above contribution [i.e,, (163)] becomes
v? 8%a;/3¢, 3@, Of °a,/d¢, d¢;.(d¢,/3x")’. Looking at (23) for this case,

we get the relation
2 2 3
d a3 d
&g”(i;> _|___9f_1__(i:) =0 (164)
Jx dg, d; \9x

N\

We see that the gradient factors do not cancel, since they are of different
degrees, so we obtain the superposition equation

e g1 _

A+ (165)

3¢ 0¢; ox'
instead of the relation ¢, = 0 that we obtained earlier without the additional
term in I". But we see that the above relation is not universal, since it depends
explicitly on the spatial properties of ¢;.

From this example we see that whenever higher order or degree terms
are added on to I', they will, for certain choices of the r; and ¢;, lead to
relations where not all the gradient terms in ¢ or r will cancel. This is
merely because they are not all of the same degree (or order) as they were
before the addition of other terms to I'. In fact, for any choice of the r; and
¢; that leaves some of the terms present from both second and higher order
contributions one must end up with nonuniversal relations; and the presence
of such relations contradicts the universality inherent in the notion of
superposition.

Hence, the I'" discussed in this section 3 [equation (22)] is the most
general one possible; i.e., is the most general one capable of being consistent
with superposition.

4. DISCUSSION

The development in Section 3 was so lengthy that it should be helpful
to summarize and point out the highlights of just what was accomplished
there. In brief, the following development occurred. We assumed that the
stochastic velocity was irrotational, describing quantum phenomena by a
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dynamic equation of the form (where B depends on the state of the system,
but not on its time derivative)

—=B (166}

together with the continuity equation. Even though the above relation seems
most reasonable, we note that it is an assumption; it need not be so. For
example, we could conceivably have a relation of the form m dv/di*=C,
where C depends on the system state (and not on its time derivative). Or
we might have some nonlocal integral form involving v on the left-hand
side of the relation instead. However, it would be difficult imagining how
such descriptions could yield an average behavior characterized by Newton’s
law of inertia. Next, assuming that v is irrotational, we derived the relation
V 2

g——z—j—;—)——i- V+l=—-¢p, (167)
where we momentarily assumed a certain restricted form for I'. Now, the
requirement of superposition together with the requirements that * should
be bounded led to the result that I'= V?r/ cr, where ¢ <0. It was then shown
that this form for I" was generally valid if superposition were to hold. In
effect, then, the few assumptions vsed, together with that of superposition,
were shown to imply the relations

Ve)? 1
Vo), yydyn, o, (168)
2m cr
and
V- (r’Ve)+mri=0 (169)

even when the above restriction on I’ was dropped. However, letting ¢ ' =

—#h’/2m, these two equations are seen to be equivalent to the single equation
h2
(————V2+ V)\If=ih ERY (170)
2m .

where ¥ = r exp[(i/ h)¢]. Thus, the Schrodinger equation is recovered.

Finally, it was also shown that the relations ¢ = ¢(ry, 12, ¢;, ¥,) and
r=r{r;, r», ¢, ¢} are none other than the well-known superposition rela-
tions of ordinary quantum mechanics.

In the final section, we will show that the assumption that vis irrotational
need not be made in the above development, since we make a compelling
argument to prove that rotational v cannot satisfy the superposition prin-
ciple. Thus, the conclusion, equation (170), follows without the proviso
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that v be irrotational. The Schrodinger equation will then have been founded
on the assumptions that dv/dt = function of state, where v is nonuniquely
defined by the continuity relation, r* is bounded, and the superposition
principle holds.

5. GENERALIZED QUANTUM MECHANICS

Up to this point we have given a compelling demonstration that the
only quantum theory—with an irrotational velocity field——consistent with
superposition and a few other stipulations is the conventional Schrodinger
quantum description. We shall extend this conclusion to cover the case
where the stochastic velocity need not be irrotational.

Again, we take the dynamic equation to be

dv
—=B 171
0 (171)
where
1
v=—Ve+A (172)
m

is the (now assumed rotational) stochastic velocity field, which is again
(nonuniquely) defined by the continuity equation

V- (rv)+r,=0 (173)

Here, ¢ is some unspecified scalar function, and A is an unspecified

solenoidal vector field. Again, B is a vector field somehow depending on

the system state (i.e., on 7, ¢, A), but not on its time derivative. Inserting

the expression (172) into the two equations above then gives the relations
governing the description as

1
v [Q(Vgo)zh?,go] + (Vo VIA+(A-V)Vo+m(A-VIA+m3y,A=8B
(174)

and
roos 1
— Ve +—Vr-Vo+r,+A-Vr=0 (175)
2m m ’

Now, let us investigate the consequence of the superposition principle
holding for the continuity equation (175) in a simple case: We assume that
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the component solutions are such that Vr, =0=Vg¢, for a =1, 2. For the
superposed state r, , A we have in general

¢ =@(r, r, @1, ¢2, Ams A(z))
r= r(rh ¥, @1, ¢23 A(l)’ A(Z))
AZA(ri, Fy, @1, @2, A(l)a A(Z))

since the vector fields A, A'*) now form part of the description of the state
of the system. (Note that we shall use Greek indices going from 1 to 2 to
indicate the component systems and Latin indices going from 1 to 3 to
indicate vector components.) Further, we write

¢
3A
where no other terms enter here on the right-hand side because we are
choosing Vr, =0=V¢, for @ =1,2. Also, the summation convention, on
ali indices, Greek and Latin, is used throughout. We also have

Vo= VA = 4, VA (176)

or
dA

and we also have expressions similar to the above for ¢ , and r ,, respectively.
Putting these expressions into (175) gives

Vr=

VA® =N, VA (177)

M, 1 r
VAE“)-VAW(i L Mo )+—/ui VAL
7 \2m AP m T B)om T
9 d
F N VA A+ N A+ o +p =0 (178)
dP, dr,

As in the case where v was purely irrotational, the next thing we would like
to do here is to reexpress the time derivatives above in terms of spatial
derivatives by using the original equations (174) and (175) for the component
solutions [see the discussion before equation (8)]. But in the present case
this willl lead to difficulty, as we now discuss. In order to express the A
and ¢, in terms of spatial quantities, we proceed as follows. The dynamic
equation (174) governing each component solution has the form 9, Ve, +
m 3,A" =b' for some vector field b depending only on spatial derivatives.
Taking divergences, and remembering that A is solenoidal, we have
V23,0, =V - b, which then yields the relation

1 [v-bp®
8Py =—— J - dx’ (179)
47 ) ¥ —x|

Again, taking the curl of the above expression, we obtain m 9,V x A!*) =
V xb™. Now setting A’ =V xS for some §*’ and further gauging S'*
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so that V - 8/ =0, we obtain —m 9,V’S'®’ =V xb'®, which finally implies
that

. V x b
3, A = : Vx‘[ b ax (180)
47m |x' —x|

We see that the relations connecting ¢, , and d, A to spatial derivatives are
nonlocal. When these nonlocal expressions are substituted into (178) for
the Af,“) and ¢, ,(r,,=0 in our special case), we end up with a relation
involving terms with the usual factors, V2A{™), VA{® - VAP .. as well
as the above nonlocal expressions. However, there is generally no way that
these local and nonlocal expressions can cancel each other to yield the
universal relations demanded by superposition. It is conceivable that certain
functional choices for the A might allow a partial cancellation with the
result depending on the particular functional form chosen for the A,
However, this is unsatisfactory, as we noted before. Or, in certain circum-
stances, these nonlocal expressions might, in fact, reduce to local ones. For
example, if b'® =Vx® for some scalar function x'*, then we have that

2. (a)
3P0 =—L J Vx dx'= (181)
47 J |x'—¥]

In fact, this is precisely the way we would recapture the A=0 description
(already discussed in Section 3) from the present one. However, b = vy
implies that 9,A =0, according to (180), so the A‘® and A would
necessarily be constant in time. But if the A’ are not spatially constant as
well, then the b‘® are seen to be not identically given as the gradient of
any function of the system state, so the relation b’ = V¢'* becomes another
condition that must be satisfied. This means that we have five unknowns
(r, ¢, and three components of A) and eight equations, consisting of the
continuity relation, V- A=0, mdv/dt =B, and b= Vy; and this is unsatis-
factory. Finally, if the A, A are constant (in space and time), v is again
irrotational. We therefore see that the assumption A # const leads to grave
problems if superposition is to hold. We therefore conclude that A=0
(A = const. is equivalent to A= 0 with another choice of ¢) and we see then
that only an irrotational v can reasonably be compatible with the superposi-
tion principle.
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