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This work is primarily concerned with finding those statements or observations 
from which quantum mechanics can reasonably be said to follow. Within the 
context of characterizing quantum mechanics as any probability field (with 
bounded probability density) whose associated stochastic velocity field is gover- 
ned by a differential equation of first order in time, it is shown that the single 
statement required is the stipulation that the superposition principle is satisfied. 
This is demonstrated by showing that only the Schr6dinger equation is an 
acceptable dynamic description for such probability fields if the superposition 
principle is to hold. 

1. I N T R O D U C T I O N  

The present work is primarily concerned with characterizing the quan- 
tization process;  that is, with finding those few physical assumptions which 
imply quan tum theory as we customari ly know it. Of  course, there already 
exist several developments  whose purpose  is to somehow characterize 
quan tum theory. For  instance, we have Dirac 's  (1947) prescription for 
replacing classical Poisson brackets with opera tor  commutators ,  or  von 
N e u m a n n ' s  (1955) method  of  associating quan tum operators with classical 
quantities once the operators  associated with posit ion and m o m e n t u m  are 
assumed. There are other  techniques as well, such as those o f  Weyl (1950), 
Rivier (1957), and Yvon (1948). In all these cases, however,  we do not  have 
what  one could call a demonst ra t ion  of  quan tum mechanics  following as 
a consequence  o f  certain physical  assumptions or observations. In fact, 
these approaches  in rio way give any compell ing reason in principle for 
believing the Schr/Adinger equation,  nor  do they proyide a unified description 
o f  the Schr6dinger  equat ion together with the statistical assertions o f  quan-  
tum mechanics.  In  all this, however,  there is an exceptional approach  which 
does yield the Schr6dinger  equat ion and the statistical assertions f rom a 
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unified framework. It is the path integral approach developed by Feynman 
(1965). However, in this case we must accept as given the expression for 
the contribution to the kernel coming from each constituent classical path; 
and this expression follows in no obvious way from more basic observations 
or assumptions. 

What we are seeking in this work is a succinct set of physical statements 
from which quantum mechanics reasonably follows. Within the context of 
our characterization of quantum mechanics as any probability field (with 
bounded probability density) whose associated stochastic velocity field is 
governed by a differential equation of first order in time, we feel that we 
have found the single statement needed; it is the requirement that the 
equations of the theory satisfy the superposition principle. 

In the following presentation this conclusion will be developed in 
stages. In Section 2, we make precise the notion of superposition and, in 
fact, also discuss linear superposition and what we shall call general linear 
superposition as well. The nontrivial result that stochastic classical 
mechanics (considered as an inviscid Eulerian probability fluid) does not 
satisfy the superposition principle will also be proven here, as a preliminary 
to later considerations. 

In Section 3 it is shown that any probability field that has a probability 
density that is bounded and with a stochastic velocity field (defined by the 
continuity equation) that is irrotational and is governed by a differential 
equation of first order in time can only satisfy the superposition principle 
if the dynamics is, in fact, governed by the Schr~Sdinger equation. 

In Section 4 there is a discussion in which the very lengthy preceding 
development of Section 3 is summarized and brought into focus, so that 
one can see just what has been accomplished. 

Finally, in Section 5, it is shown that any probability field of the above 
kind, except one whose stochastic velocity field is not irrotational, cannot 
be expected to satisfy the superposition principle. 

The chief conclusion of all this, then, is that only the Schr6dinger 
equation is an acceptable dynamic description for probability fields with 
bounded probability densities, and with stochastic velocity fields governed 
by differential equations of first order in time, if the superposition principle 
is mandated. We also add the obvious, which is that once the SchrSdinger 
equation is established, so, then, is Feynman's weighting factor and his 
"derivation" of the statistical aspects of the theory as well. 

2. SUPERPOSITION AND CLASSICAL MECHANICS 

In this section we first define what it means for a system of differential 
equations to satisfy a superposition principle, linear superposition principle, 
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and general linear superposition principle. It will then be demonstrated 
that a common stochastic version of classical mechanics does not satisfy 
the superposition principle. 

2.1. Definitions 

Using a nomenclature that will be relevant later, suppose that we have 
a system of two partial differential equations in the dependent variables 
(fields) r(x, t) and q~(x, t), where x and t signify position and time, respec- 
tively. The equations may involve spatial as well as time differentiations, 
of arbitrary order and degree. We say that the system satisfies the superposi- 
tion principle if, for every pair of solutions of the system ra(x, t), ~ol(x, t) 
and r2(x, t), ~2(x, t), there is another solution r(x, t), q~(x, t), where q~ = 
q~(rl, r2, ~1, q~2) and r = r(rl, r2, q~, q~2), and where these functions are 
independent of the nature of the functions q(x,  t), r2(x, t), ~l(x, t), and 
~2(x, t). [We call the functions ~p(rl, r2, qh, ~2) and r(r~, r2, q~, ~2) uni- 
versal.] 

Further, we say that the system satisfies a linear superposition principle 
in case there exist variables ~7 = 7/(r, q~) and ~: = ~:(r, ~) (in terms of which 
the system of equations can be expressed) which are universal functions of 
r and q~ such that if rl, ~ and r2, ~2, and hence r, ~0, are solutions, then 
(~71, ~ )  and (~72, ~2) are solutions and ~7 = a~+fi~12, ~= a ~ + 3 ~ 2  is also 
a solution, where ~i ~ ~(r/, r and ~:i-= ((r/, r for i=  1, 2, and a and /3 
are arbitrary, real constants. In particular, we see that if the system satisfies 
the linear superposition principle, and if (~/, ~) is a solution, then so is 
(a,/, a~:) for any real constant a. 

Finally, we say that the system satisfies the general linear superposition 
principle in case the system satisfies the linear superposition principle and 
also satisfies the property that, whenever (~7, () is a solution, so is (a~7 +/3~:, 
a~- /3~ )  for any real constants a and/3. 

Some comments about these definitions are in order. We note that if 
the system satisfies the general linear superposition principle, then it also 
satisfies the other two superposition principles. Further, if the system satisfies 
the linear superposition principle, then it satisfies the superposition prin- 
ciple. Conventional quantum theory, as we shall elaborate later, satisfies 
the general linear superposition principle; classical mechanics satisfies none 
of  them, and we shall find another mechanics that satisfies the linear but 
not the general linear superposition principle. 

2.2. Classical  Mechanics  

We now consider classical mechanics as a stochastic theory and prove 
that it does not satisfy the superposition principle. This result, which is 
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interesting in itself, will be used to frame the context and formalism for a 
later, more general discussion relevant to quantum theory. 

We consider an ensemble of noninteracting classical systems, each 
system being subject to the same external field V(x). For simplicity let each 
system be composed of a single particle. We make the usual continuity 
assumptions so that we may speak of the hydrodynamic-like (stochastic) 
velocity v(x, t) of this "fluid" in the abstract configuration space of the 
ensemble. Assuming that v is irrotational, so that we may put v-- m-lV~ 
(where m is the mass of the particle) for some scalar function ~p, we assume 
that the ensemble is described by the dynamic equation 

dv 
m - ~ =  - V V  (1) 

as well as the continuity equation 

V" (r2V~p) + mrS, = 0 (2) 

where r2(x ,  t)  is the probability density of the replicas in configuration 
space. We note that equation (1) is merely Newton's law for a single particle, 
since in the present case v is both the single-particle velocity and the 
stochastic velocity field, which assures conservation of system number via 
equation (2). 

Using the relation v = m-lV~, we can reexpress (1) as 

(v~ )  2 
- - +  V = -~p,, (3) 

2m 

where the form here (but not its content) is the same as the Hamilton-Jacobi 
equation of classical mechanics. Equations (2) and (3) comprise our descrip- 
tion of stochastic classical mechanics (which is the same as that of an 
Eulerian fluid). 

We are interested in investigating these two equations in relation to 
the superposition principle because this provides us a way of introducing 
an approach which will be very useful later when discussing the same 
problem for the equations of quantum mechanics, to which the above 
equations are very similar. 

We assume then that the superposition principle holds for this system 
and investigate some of the consequences. We shall find that this leads to 
contradictions, forcing the conclusion that the superposition principle can- 
not hold for this system after all. 

Consider equations (2) and (3) with any two solutions (r~, ~ ) ,  (r2, r 
Let ~p = ~(r~, r2, ~Pt, ~P2), r = r(r2, r2, ~1, {P2) be another solution, where ~p 
and r are universal functions. Then we can write 

V~ = a~V~i +~SiVri; ~,,=~i~i,,+flir~,, (4) 



Snperposition and Quantum Mechanics 833 

and 

Vr= Ailgq~i+ Bilgri; r,, =Aiq~i.t--k Biri,, (5) 

where  the summat ion  convent ion  is used throughout ,  the s u m m a t i o n b e i n g  
f rom 1 to 2, and c e ~ = O ~ / O ~ , . . . ,  etc. 

Substi tut ing these expressions into equat ions (2) and (3) gives 

Vq~. Vr 9 + Vr~. Vrj~3iflj + 2V ~p~ �9 I 7 r j a i ~ S j  -4- 2m V = --2m(aiq~i, t q- fl, r~,,) 

(6) 

and 

r(  o~i V2q~i -.k fli V2 ri -4-. V oli �9 V ~i  -.f- V fli . V ri ) 

+ 2(a~Vq~, + fl,V ri) �9 (A,Vq~i + BjVr,) 

+ 2 m ( & ~ , ,  + B~r,,,) = 0 (7) 

Now,  in equat ion (6), which is all we shall need for present  consider-  
ations, we reexpress  q~,, and ri,, on the r ight-hand side in terms of  spatial  
derivatives via equat ions (2) and (3), giving, after  collecting terms, 

V ~ " V ~:{ a,o~; - o~,au} + V r, " V rj ,e,~ j 

+gq~," Vrj{2a, f l j -213, t3o}- f i , r iV2~,+2mV(1-al-a2)=0 (8) 

As a consequence  of  superposi t ion,  this equat ion must  hold for  all funct ions 
r~ and ~ ;  also, the a~ and fli must  be universal  funct ions of  their  arguments .  

Now,  choosing q~, q~2, r~, and r 2 to all be constants  (at a given t), we 
find that  

a l  + a 2  = 1 (9) 

when  V # 0. But since the a~ are universal  functions,  this relation must  be 
valid in general  (i.e., even when  V-= 0). 

Rewrit ing equat ion  (9) as 

0~ Oqo 
1 (10) 

0~1 0~2 

we see that  

= ~, +f (rb  r2, ~)1, q)2) (11) 

for  some funct ion f (this very weak s ta tement  will lead to one of  content  
presently). 

Therefore ,  we have that  

o f +  Of=o  (12) 
Oq~l 0~2 
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which, in turn, implies that 

f= f ( r , ,  r2, ~2- ~,) (13) 

yielding the relation ~ = ~1 +f(rl, r2, ~2- q~). 
Again returning to equation (8) and this time choosing r~, r2, and ~2 

as constants and V ~  as a constant vector (all at a given t), we get the relation 

cr~ = c~, (14) 

from which we conclude that a l  = 0 or 1. In the same way, choosing rl, r2, 
and ~ as constants and V~2 as a constant vector yields the result that a2 = 0 
or 1. From equation (9) this means that either a~ = 1, CI~ 2 ~-- 0 or ~1~ 1 = 0 ,  a 2 = 1. 
NOW, a 2 = 0  implies that f= f ( r l ,  r2), which implies that q~ = ~+f(r~,  r2). 
But by symmetry we must also have ~p = ~2+g(r~, r2) for some function g, 
which then implies that ~2 -~1  =f(rl, rz)-g(rl,  r2). But this cannot be, 
since ~ and ~2 are independent of  rl and r 2. Choosing a~ = 0 leads again 
to the same difficulty. 

So we see that the stochastic form of classical mechanics considered 
does not satisfy the superposition principle)  

3. S U P E R P O S I T I O N  AND CONVENTIONAL QUANTUM T H E O R Y  

In this section we consider the constraint placed on any conceivable 
quantum theory by the superposition principle as defined earlier. More 
specifically, we shall prove that the only quantum theory possible, whose 
stochastic velocity field (to be defined shortly) is irrotational and is governed 
by a differential equation of first order in time, has a bounded probability 
density, and satisfies the superposition principle, is that described by the 
customary Schr6dinger equation. In this connection, we describe the quan- 
tum theory as conventional if its stochastic velocity field is irrotational. 

We begin by constructing the form of the most general conventional 
quantum theory possible. In the usual way we envisage a set of  noninteract- 
ing replicated systems (each.consisting of just one point particle in an 
external field, for simplicity) forming our sample space. Let r2(x, t) denote 
the observed density of  measured positions at time t (assuming no prior 
measurements). Then we (nonuniquely) define the stochastic velocity v(x, t) 
by the requirement that, for given r2(x, t), v assures conservation of the 
number of  systems. That is, v satisfies the continuity equation 

V.  (r2v) + r 2, = 0 (15) 

for all x, t. 

2It is also known, of course, that customary Newtonian mechanics does not satisfy the 
superposition principle. But this fact does not seem to be simply related to the result in this 
paper for stochastic classical meehanics. 
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For any given r2(x ,  t) it is easy to show that there exists such a v (in 
fact, infinitely many). 3 We furthermore assume that v is irrotational, and 
we write 

v = l v ~  (16) 
m 

where m is the mass of the one-particle system being considered, and q~(x, t) 
is some scalar function. 

Now, we assume that 

dv 
m-~- = B (17) 

where B is a vector field somehow depending on the system state (see below) 
under consideration (but not depending on time derivatives of the state). ,  

In general, we may write 

B = V f ~ + V x A  (18) 

for some scalar function f~ and vector field A. We expect that for each 
system state [i.e., specification of p(x, t) and r2(x, t)]f~ and A will be 
different. 

From the irrotationality of v, equation (17) then yields the relation 

V [0,~ +~-~m (Vq~)21 = V I l + V x A  (19) 

And if the fields are such that they all vanish at infinity (say, for certain r 2 
and ~) we can then conclude (for such states) that 

1 
0t @ q.- ~m (V~o)2 = ~~ and V x A = 0  (20) 

Here, we certainly expect that f~ is a scalar function of the system state, 
i.e., of r, r and their spatial derivatives. If this were not so, then the equation 
would have different forms for different states, which possibility we reject. 
Moreover, 1-1 must be invariant under rotations and coordinate inversions; 
this is obviously so when V = 0 and, in order for the equations to always 
have the same form even in external fields, must also be so when Vr  0. 
Also, since the above equation is to have the same form for all possible 

3For example, the expression 

1 V f r ! ,dx '  

is easily shown to satisfy the continuity relation for any specified r2(x, l). Further, we may 
add on any solenoidal field/r 2 to the right-hand side here and still have a suitable v. 
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states (whether or not the fields vanish at infinity), the above form is generally 
valid. 

Now, explicitly allowing for the presence of an external field V(x), we 
write f~ = - F  - V(x), so that our description is governed by the two equations 

(V~~ V + F  =-q~, ,  V. (r2V~)+mr2,=O (21) 
2m 

where F is an invariant dependent on the system state. 
The first equation above will be referred to as the dynamic equation. 
Having in mind a proof  in stages, we momentarily restrict F to the form 

F=F(r,q~)+/xV~o. Vr+vVq~.V~+~TVr. Vr+crV=r+AV2q~ (22) 

where the coefficients/x, v, 7/, o-, and A are functions of only r and q~. We 
further require that the scalar function F(r,  ~) is defined in the neighborhood 
of r---0, since otherwise the above equation becomes singular there. The 
above expression for F is the most general invariant form possible involving 
derivatives through second order and degree. Later, the restriction on F as 
to order and degree will be dropped. 

Continuing, we first will show that the requirement that these equations 
satisfy the superposition principle and also have a bounded probability 
density drastically limits F. In fact, we will show that, of the various 
coefficients in F, only cr does not thereby vanish, and its form is uniquely 
determined, so that the pair of equations (21) become equivalent to the 
SchriSdinger equation. Second, we shall show that all this remains true even 
if the restriction on F is dropped. 

Before beginning, we stress an important point about the form of the 
first of equations (21) [and thereby also about equation (17)]. In writing 
the equation this way we mean that the term (V~p)Z/2m should survive; i.e., 
no term in F can cancel it out. This means that the coefficient v in F cannot 
equal -1/2m. This must be so, since otherwise equation (17) is replaced 
by or reduced to the form 0,q~ = l I ;  and v itself has then ceased to be a 
fundamental quantity. 

3.1. Equations of Superposition 

We now require that equations (21) satisfy the superposition principle. 
For this we use exactly the same approach that we used with the classical 
stochastic theory discussed in Section 2, namely we consider two solutions 
(r~, ~ )  and (r2, ~2) and we require that there exists another solution (r, q~), 
where r =  r(r~, r2, ~ ,  ~2) and q~ = q~(r~, r2, g,~, ~P2), and where r and q~ are 
universal functions of their arguments. We are to recall that each solution 
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(r~, q~), (r2, q~2) satisfies equations of exactly the same form as (21) and 
with the same coefficients /x, u, r/, o', and A, but of the arguments (r~, q~) 
or (r~, q~2), respectively. Again, we have equations (4) and (5) relating the 
solutions. Then inserting the expressions from (4) and (5) into (21) and 
then, as in Section 2, reexpressing the g~., and r o terms on the right-hand 
side here back in terms of spatial gradients, we obtain the following relations 
coming from the dynamic and continuity equations, respectively (using the 
summation convention) 

V ~ "  V ~ j M o + V r i "  Vrj~u + V~pi �9 V r j % : + 2 m V ( 1 - a l - o l 2 )  

2 

+ V2q~i~)i + V2ri gi -]- F(r ,  ~ )  - Y~ cegF(r,, q~,) = 0 
1 

(23) 

where 

OOl i 
,~ij =-- aiaj + 2 m A o  + 2rntr OAi + 2mA - - -  ai6~ - 2ma~vi6o 

A i j  ~ ~ a i A j  --b po l io l  j -[- " q A i A  j 

O B i  O ~ i  
G o. =- fliflj + 2 m c  o + 2 mcr - -  + 2mh - -  - 2ma~ ~ 3 U 

Orj Orj 

c~ =- . ~ i B j  + ~t~,~j + ,B~Bj 

O A  i Of f  i OBj 
c~ o =- 2aiflj  + 2 m B g  + 2 m t r - - +  2mA - - +  2 m t r - -  

Orj 01) Oq~i 

+ 2 mh Oflj _ 2 ma~ txi 6~j - 2fii (3 U 
Oq~ 

(24) 

(25) 

(26) 

(27) 

(28) 

B U =- lza,B: + tzfljA, +2cei~:v +2rIA,  B: 

~i  =- 2 m (  o'Ai + acq) -2mcqh~ - fli r~ 

gi =- 2m(crBi + hfli - ai~ri) 
and where 

(29) 

(30) 

(31) 

Further, 

v, -~ v(r,, ~ ) ,  "t'l i ~ "rl ( r i , q~ i ) , . �9 �9 (32) 

Vq~i" V~pja!/+Vri'Vrjbij + V~oi. Vrje~/- V(A~ + A2) 

q- V2q~idi q- V2r~/= 0 (33) 
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where 

r Oce, ~_1 ce,Aj - 2 ~ A , 6 o - A , v , 6 o  (34) 
au = 2 m  O~j m 

b..-=-f-r 0 /3 ,+1/3 ,Bj  - A, ~7,3 U (35) 
'J 2m Or 2 m 

r Oaiq_r._f_O/3j+laiBj+l/3iA_mil_t ,  i6q 1 B~6~j (36) 
e~ Orj 2rn Oq~i m rn - - m  

r 1 
d, =---~m c~, - A,A, - ~m Biri (37) 

r 

f =- ~m/3` - A, cr, (38) 

We now consider  consequences  of, first, the dynamic  implicat ion,  
equat ion (23), and then the continuity implicat ion,  equat ion (33), using the 
same technique for each. Turning to equat ion (23), we first choose all the 
r~, ~ to be constants  (at a given t) as well as V -= 0, which gives us a universal  
relation be tween F and the G. Then,  al lowing V ~  0 and again choosing 
all the ri, ~, as constants  implies that  the coefficient o f  the te rm containing 
2 m V  is zero. Again choosing r,, ~a to be constants  and Vq~2 to be a constant  
vector  (all at a given t) implies that  the coefficient o f  the term containing 
Vq~2 �9 Vq~2 is zero. Cont inuing  on in this way, since the coefficients o f  the 
var ious gradient  terms are universal  functions,  we see that  we can ul t imately 
set each coefficient (or its symmetr ic  sum) to zero, yielding these universal  
equations:  

~r = 0, i = 1, 2 (39) 

~iJ + ~ y  = 0, i ~ j  (40) 

~ ,  = 0 ,  i =  1,2 (41) 

~ j +  ~j, = 0, i ~ j  (42) 

c~ = 0 all i , j  (43) 

c~ 1 + c~2 = 1 (44) 

~ ,  = 0, i = 1, 2 (45) 

~i = 0, i = 1, 2 (46) 

2 

F = y_, o~ F, (46') 
1 
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Since it can be shown that  equa t ion  (43) is a consequence  o f  all  the 
others,  we have 11 different ia l  equa t ions  plus  one a lgebra ic  equa t ion  here 
to content  with. 4 

Again ,  using exact ly  the  same cons idera t ions  on equa t ion  (33) we 
ob ta in  the  add i t i ona l  equa t ions  

aii= 0, i = 1, 2 (47) 

a ~ + a j i = 0 ,  i # j  (48) 

bli = 0, i = 1, 2 (49) 

b o + bj~ = O, i ~ j  (50) 

e;j = 0, all i , j  (51) 

A1 + A2 = 0 (52) 

di = 0, i = 1, 2 (53) 

f = 0, i = 1, 2 (54) 

A n d  here,  s ince it can again  be shown that  equa t ion  (51) is a con- 
sequence  o f  the other  equa t ions ,  we have 11 add i t i ona l  equat ions ,  for  a 
to ta l  of  22 different ial  and  one a lgebra ic  equa t ion  to be cons ide red  as 
charac te r iz ing  the supe rpos i t i on  pr inc ip le .  These  23 equat ions  compr i se  the 
superposit ion equations,  and  the rest of  this sect ion will be devo ted  to thei r  
consequences .  

3.2. Consequences of the Equations 

In a fa i r ly  sys temat ic  m a n n e r  we now cons ide r  the consequences  o f  
the  above  supe rpos i t i on  equat ions .  

To beg in  with, we can  say someth ing  o f  the d e p e n d e n c e  o f  r and  r on 
r and  r as fol lows.  F r o m  equa t ion  (52) we have that  

Or Or 
- - +  ...... 0 (55)  
0r 0r 

which impl ies  that  

r = r ( r l ,  r2, r 1 6 2  (56) 

Again ,  f rom equa t ion  (44) we have that  

0_~+ 0r = 1 (57) 
0r 0r 

4The equations %j = 0 and e 0 = 0, both for all i, .L can be shown to be a consequence of the 
other 20 (differential) superposition relations in this sense: Later in this section it will be 
shown that ~ = A = 7/= v = 0 as a consequence of the above 20 relations; and at this time it 
will then be straightforward to show that %j = 0 and eli = 0 must also be true. 
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which implies,  by  an integration,  that  

q~ = qh + f ( r ~ ,  r2, q~x, ~2) (58) 

for  some funct ion f But we easily see that  

O f +  O f =  0 (59) 

which implies  that  f = f ( r ~ ,  r2, ~t)2-- ~1), SO that  we have 

= q~l +f(r~, r2, q~2- ~,) (60) 

This also implies that  all the quantit ies ai, fli, Ai, and Bi depend  on r and 
q2 through the combina t ion  r  Equat ions  (56) and (60) will be very 
useful in the following discussion. 

Now,  we can show that  the coefficients /z, ~7, o-, A, and u can depend  
only on r, as follows. Equat ion  (53) for  i = 1 implies that  

(1/2m )( ral - B 1 rl) 
A1 ~ A ( r l ,  ~1)  -- (61) 

AI 

But as we have just established,  all the quanti t ies on the r ight -hand side 
here depend  on ~ and  q~2 as q~2-q~l. Further ,  the r ight-hand side cannot  
depend  on r2, since A1 does not. This means  that  equat ion  (61) has the fo rm 

A (rl,. qh )=  ~( r~ ,  ~ 2 -  ~ol) (62) 

for  some funct ion ~.  But this can only be true if A1 = A(r~); and likewise, 
A2 = A(rz) and A = A ( r )  (we recall that  all the funct ions A are the same).  
Again,  equa t ion  (54) implies for i = 1 that  

~ =- cr( r~, ~ )  = r/3d ZmA~ (63) 

which implies,  since the r ight-hand side here only depends  on r~ and q~2 - q~l, 
that  o-1 = tr(r l) ;  and also, o-2= o-(r2) and t r =  o'(r) .  Again, equat ion  (47) 
implies for  i =  1, and using the same argument ,  that  ~,~ = z,(r0, ~ = v(rz), 
and u =  u(r). Likewise, equat ion (49) implies that  ~ = ~7(r~), */2 = ~7(r2), 
and ~7 --- ~ (r). Finally, in the same way, equat ion  (41) implies t h a t / ~  = ~ (rl),  
/-~z = ~(r2),  and/ . t  = p~(r). 

Thus,  we have /~  = /~ ( r ) ,  ~7 = ~/(r), A = A(r),  v = l,(r), and or = or(r). 
Now,  we shall demons t ra te  that  the coefficient o- in F is o f  special  

sign!ficance, by proving that  if cr ~ 0, the superpos i t ion  principle cannot  
hold. We shall do this by assuming that  tr --- 0 and showing that  the superposi -  
t ion equat ions then lead to a contradict ion.  

Assuming that  tr-= 0 (and therefore  that  o-~ = 0 = cr2), we find f rom 
equat ion (54) that  /3~ = 0 = / 3 2 ,  which implies [ f rom equat ion (60)] that  
q~ = q~l +f(q~2 - ~1), or q~ = ~2 "~- g(~ol -- ~02), for some functions f and g. Before 
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proceeding further, we first show that both 0(i and 0(2 must be nonzero, as 
follows. Suppose 0(1 = 0; then from the form of 9 above we conclude that 
f = ( + c  (where c is a constant and ~ :~92-91 ) ,  so that 9 =  
91 + (92 - 9 0  + c = 92 + c. But by symmetry we must also have that 9 = 91 + e' 
( c ' =  const), from which we conclude that 9 2 -  91 = const, which is absurd, 
since 91 and 92 are independent. Hence, we conclude that oq a2 # 0. Continu- 
ing on, equations (49) imply that (since fl~ = 0 =/32) A~ ~ = 0 = A27/2. So 
we have A I = 0 - - A 2 ,  or B 1 = 0 =  72, or both. Assume the former. Then 
equation (47) implies that 

00(1 00(2 00(2 
- - -  0 

091  391 092  

which in turn yields 9 = 91 + C ( 9 2 -  9 0  + D, where C = C(r~, r2) and D = 
D(r l ,  r2). Therefore, 0(1 = 1 - C  and 0(:= C, where C r  and C # 1. Now, 
equation (40) yields the relation 2al a2(1 + 2my)  = 0, which, since al a2 ~ 0, 
implies that v = - l / 2 m  = const. But this cannot be, by the proviso just 
before Section 3.1. Hence, A1 = 0 = A2 is unacceptable. So, now we consider 
the possibility ~1~---0=T12=~ (together with ~ 1 = 0 = / ~ 2  and o-=-0, of 
course). Now, equation (48) gives the relation 

r Ocq 1 
( a l A 2 +  0(2A1) 

/~ 092  m 

and equation (40) yields 

20(10(2 + 2m (~t~0( 1 A2 q-/*ot2 A1 + 2 ~'0(10(2) "~- 4mh 
00~1 = 0 

092 

Combining these two relations then gives 

l~mr - 2mA Oal 
OdlfX 2 --  (64) 

1 + 2rnv 092 

where, necessarily, 1 + 2my  # O. Now, 0al/092 = 0 is impossible, since this 
would lead to al0(2=0, which has been shown to be untrue. Hence, we 
conclude that 

0(10(2 _ l ~ m r -  2mA 

0 a J 0 9 2  l + 2 m v  (65) 

On the left-hand side here we have a function of ( 9 2 -  91) only, and on the 
right-hand side a function of  r only. This implies that r =  r (92-91) .  But 
this cannot be, since r (when r2 = 0 )=  rl contradicts this. Hence, ~71 = 0 = 
~/2 = ~/ is also not possible, and we conclude that if superposition holds, 
then we must have ~ ~ 0. This also implies that in future discussion division 
by tr is admissible. 
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We will now go through a sequence o f  developments  which will lead 
to the f ac t t ha t  v =0 ,  as well as to the functional  form of  ai, ]3i, r 2, and A~, 
Bi. Beginning with equat ion (48) we have 

aa l  + r ( a ~ A 2 + a 2 A I ) = O  (66) ar 

where ~ -  ~ 2 - ~ .  Recalling the definition o f  the A~, we can rewrite this as 

Oul + (2crl . O In r 
O~ - 1) ~ = 0 (67) 

from which we conclude that  the functional  form of  the al is given by 

a~(rt, r2, ~)=-fi  h(r, ,  r2)+~ 

(68) 
1 

a2( rl, r2, ,~) =- ---~ h( r,, r2) + ~ 

for some function h(rl,  rE). Further,  h(rl,  r2)= - h ( r 2 ,  rl). 5 Next, equat ion 
(47) implies the relation 

aa l  a ln  r 2m 
- - +  (2ch - 1 )  - -  AI ul = 0 (69) 
a~ a~ r 

which, u p o n  compar i son  with equat ion (67), implies that A1 vl = 0 = Azv2. 
We have already seen that  we cannot  have A1 = 0 = Az, so we conclude that 

vl = v2 = v = 0 (70) 

Next, we obtain the functional  form of  some other relevant quantities. 
F rom equat ion (49) we have 

a l n 3 2  a l n r  2 2mA~ 
- - 4  - -  , / 1=0  (71) 

Or~ Orl r B1 

Equat ion (54) implies that (2rn/r)A1/ f l l  = 1/o-l, which, when combined  
with the above equation, yields 

a ln(/31rZ ) = ~ h  (72) 
Or I 0 1 

5We have, by interchanging 1 and 2, that r = et +f(rl, r2, r = ~o2+f(r2, r~, -r This implies 
that f(r2, rt, -~) =f(r  l, r2, ~:) -~:. We have then that al,= 1 -af/or = h/r2+�89 implying that 
h~ r 2= �89162 r2, ~). Interchanging I and 2 in this equation gives 

h(r2, rl) 1 a a(~-~) "f(r2' rt'-~) = -1-42 of(rl'o~ r2' ~) h(rl'r 2 r2) 
r 2 2 

by the above relation. Thus, we have that h(r2, ri) = -h(ri, re). 
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which finally gives the relation 

fll = H ( r l )g(  r2, ~) / r 2 (73) 

where In H(ri)=-S(rh/O'~) dr~ [r/~---0 implies that H(r~)= const] and where 
g(r2, ~) is some function of r2 and ~ 2 - ~ l .  Of course, we similarly have 
the relation 

f12 = H ( r2)k( rl, ~ ) /  r 2 (74) 

where k is some as yet unspecified function. We can use these results to 
get the functional form of r 2 as follows. Again using equation (54), we can 
reexpress equation (73) as 

H ( r l ) g ( r 2 ,  ~) 

2m 

from which we conclude that 

r2 - H ( r l )  
m~(r0 

o- 1 Or 2 

2 o~, 
(75) 

- -  G( r2, s c) + f (  rl, r2) (76) 

where G(re ,  ~)=- - S  g(r2,  s ~) d~, and f is some as yet unspecified function. 
In a similar way we also find that 

r2 _ H(r2_____~) K ( r l ,  ~) + g ( rb  r2) (77) 
m,*(r2) 

where K ( r l , ~ ) = - S k ( r l , ~ ) d s  and ~ is another unspecified function. 
Further, from equation (54) we see that fll/~rl = -f l2/cr2,  which implies that 
K = G(cr2 /oh)H1/H2 [where H; = H(r~)]. Therefore, equation (77) can be 
rewritten as 

r2 _ n(rl)_ G +- ~, (78) 
mo'(rl) 

which, when compared with equation (76), tells us that g =f .  We can draw 
another conclusion from the above relation between K and G. We note that 

o'(r2) G(r2,  ,~) = o'(r,) . . ,  
H(r2----7 H(rl--~ ~ t rl, ~:) (79) 

This relation can only be true if each side is solely a function of ~:, since 
otherwise it would imply that r l - -r l ( r2,  ~:), which is untrue, since rl, /'2, 
and ~: are independent. So, we can write 

tT(rl) 
- -  K ( r , ,  ~) = N ( , ~ )  (80) 
H(r l )  
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for  some funct ion N(sr Therefore,  we can write the general funct ional  
form of  r 2 as 

r 2 -  H ( r l ) H ( r 2 )  N ( ~ ) + f ( r l ,  r2) (81) 
mo-(rl)0-(r2) 

where,  moreover ,  we now see that f ( r l ,  r2) = f ( r 2 ,  rl). 
We can now turn a round  and get an even more  useful expression for 

fli. By differentiating the relation between K and G, we obtain 

0"2 0"1 d N 

Inserting this into equat ion (73), we then obtain 

H ( r 0 H ( r 2 )  H ( r 0 g ( r 2 )  
/31= 0"(r2)r: g ' ( ~ ) ,  f12-  0"(r~)r 2 N ' (~)  (82) 

We also find for A; = Or/Oq~i = +0r/0~: the expressions 

g ( r l ) g ( r 2 )  H ( r 0 H ( r 2 )  
A~ = N ' (~) ,  A2 - N ' ( ( )  (83) 

2 mr0"( r Oo-( r:) 2mr0"(r00"(r2) 

The expressions for Bi = 0r/0ri are also easy to calculate. We do not bother  
to express them here, however.  

Thus, we have shown that v = 0, and have obta ined the general func- 
tional forms of  ai, fli, r 2, A~, and Bi. 

We can now use the above expressions for  fl~ to obtain a differential 
relation between 0" and ~7, as follows. From equat ion (82) we find, by 
differentiating with respect  to r2, that 

r 0/~1 1 /81~82 r ]~1 , r r/2 
- - - -  - -  0"2"{- ~m /~ 1 - -  (84) 

2m Or2 m 2m 0-2 0"2 

where primes denote  differentiation. We also have that 

r 092 5~B, r ~2 ,+___r ~2 
- - -  - -  0-,  - -  rh ( 8 5 )  

2m or1 m 2m 0-1 2m o-~ 

Adding these equations gives 

F_.f-... ( O J~ I _I_ O ~ 2 ) ..~ L ( ~ I B2 ..I- ~ 2 B I ) 
2m k Or2 Or~ / m 

r ( - ~ '  0-21 "t" ~ 1 ~t'/-'22 - ~--22 ~ +~2 ) 
= 2 i n  0-2 0-2 0-, 0", rt, ( 8 6 )  
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Comparing this with (50), we conclude that 

( /3' 0-~ +/31 ~-22 - /3-2 0- '1 +/32 ~,)  = 0 (87) 
-- ~22 0"2 0"1 0"1 

Now, using the familiar relation/3~/0"1 = -/32/o-2 here gives the result 

0-2 \0"2 0-2] 0-1 \0-1 Or1/ 

from which we conclude that, necessarily, 

1 ( ~ _  0-'~ = const= c (89) 
0"\0- 0-/ 

And from this we get the equation 

0-' + co" 2 - ~7 = 0 (90) 

which is a Riccati equation relating 0" and ~7. Of special importance here 
is the implication that 

H=0-exp(cf 0-dr ) (91) 

Next, we proceed to show that tz = 0. Noting that 

OA1 OA2 _ OA2 _ OA2. OOl 1 - -  OOl 2 00[. 2 00l. 2 

0~1 0~O 1 0~ - 0r 0~1 0~1 0~ 0~2 (92) 

we find by subtracting the two equations (39) from each other that 

aT- a~+2m(all-A22) = c~1- c~2 (93) 

since v =0. Now, A l l - A 2 2  = - / z A 2 ,  which, when inserted into the above 
equation, yields tzA2 = 0. Since A2 cannot be zero, as already shown, we 
conclude that 

tz = tzl =/*2 = 0 (94) 

We now make some considerations that will allow us to conclude that 
A = 0 = r/; determine the exact form for 0-, and ultimately determine the 
expression for N(~:). We begin with (53). Weinsert  into this equation the 
expression for 11 given in (68), the expression for A1 given in (83), and 
the expression for B1 = Or~Or1 found by differentiating (81). Then, multiply- 
ing through by r 2 and collecting terms gives the relation 

N(~)(H1H2 r1HIH2711 rlHaH20-~ AaH1H2 
2/~ \ 0"10"2 0"20"2 ~ 0-20-2 / "q --0"10"2 N ' ( r  

+(~]+h-r~rl)=02 (95' 
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for all r~, r2, and ~. This equation has the form 

N(()M(r~, r2)+ N'(~)P(r~, r2)+ Q(r~, r2)= 0 

for all r~, r2, and ~:. Differentiating with respect to ~: gives the relation 
N ' M  + N"P = 0 for all rl, r2, and ~:. Now, if P ~ 0, we may divide through 
by P to conclude that N " / N ' =  const = A = - M / P .  This yields the solution 
for N(~)  as 

N(~)  = C e he + D (96) 

where C and D are constants. We note that C - - 0  is unacceptable here, 
since it implies that N ' =  0, which implies that A~ = 0 = A:. However, we 
see that, regardless of  the sign of A, N ~ ~ as A~-~ ~ .  This is inadmissible, 
since it implies that for A( r  -~ ~ (say, for certain choices of  ~:, when 
[x[ -~ ~ )  the function r 2 increases without limit; i.e., the probability density 
is unbounded.  So, this solution must be rejected, and we conclude that we 
must have that P-= 0, i.e., that 

A l = 0 = a 2 = a  (97) 

Continuing, with P ---- 0, we now have to satisfy the simple relation N M  + 
Q = 0. Differentiating this with respect to ~ then implies that N ' M  = 0, 
implying that N'(~)-= 0 and /o r  M-= 0. Now, N'(~:) = 0 is unacceptable, 
since it implies that A1 = 0 = A2. So, we conclude that M---0,  which then 
also implies that Q --- 0. Now, M --- 0 implies that 1 - r~71/~r~ + rlo"Jcr~ = O. 
Combining this relation with (90) gives 1 -  c r ~  = 0; that is, 

cr = 1/cr (98) 

where c -1 = const # 0. Furthermore, we now find ~7 from (90) to be given by 

?7 = 0 = 771 = "172 (99) 

Collecting our latest results, we have shown that 

~r= 1/cr, n =A =/z  = v = 0  (100) 

as the result of  the requirement of superposition, and bounded probability 
density. Finally, Q---0 gives the relations 

~ f + h - ~ 0 - ~ l = 0 '  ~ f r - h - r 2  O f = 0 2  Or2 (101) 

the second equation following from the first by 1 ~ 2 interchange, and the 
already established an t i s ym m et ryo f  h(r~, r2). Adding the two equations 
above then gives an equation for f, 

j r=r,  r: 0s" (lO2) 
20r~ 2 Or2 
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which only informs us that )7 is homogeneous of degree 2. We do get a 
useful result by subtracting the above two equations. This gives a relation 
determining h from f as 

1 (  Oj 7 rzOf) (103) 
h=-~ r~ or, 

3.3. Determining ] and N(~:) 

We shall now determine f and N(~C). We note in this connection that 
none of the 22 differential equations of superposition give any further 
information on f and N(~C), except for essentially equations (39), (41), and 
(42). 

We begin with (39), which gives us 

a~+ 2m~r OAL/O~ = oq (104) 

from which we obtain 

a l a  2 = -2mcr oA~/O~ (105) 

which also follows from (40). From the preceding expressions for a~ and 
Aj, the above equation can be rewritten as 

1 h 2 cqr2N"(~) 
4 r 4 -  r 2 (106) 

and using (81) for r 2 here, we finally obtain the relation 

=1(. N 2 }_?2+ 27N "~ c r l r 2 N N "  
cqrzfN" (107) h2(q, r2) 4 \rn2cr~o'~ rnoho-2/  mcq~ 2 

where primes signify derivatives, and the relation is true for all q ,  r2, and 
~:. This equation has the form 

A(q,  r2)Y(~) + B(q,  r2)3(~) + C( q, r2)e(~) 

+ D(rl, r2)O(() + E(q ,  r2) = h2(q, r2) (108) 

for all q ,  r2, so; and where Y =- N2, 6 =- N, e =- NN", and 0 -=- N". We now 
seek the implications of this relation. Taking derivatives, we have 

AT'+ BS' + Cs' + DO' = 0 (109) 

for all rl, r2, ~. Now, 3" ~ 0 (since N -= 0 or N '  ~- 0 implies that A~ = 0 = A2), 
so we have 

~' e' O' 
A + B--~+ C--~+ D--~,=O (110 )  
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Another  differentiat ion gives us 

(q' 

for all rl, r2, ~. Now, we can easily show that ( 6 ' / y ' ) ' ~ O ,  since N ' ~ 0  and  
N ~ 0. So we can divide the above equat ion  through by this factor. Again 
we take derivatives and  are then confronted  with the equa t ion  

C L ~ j  L(a'/~/)'J =0 (112) 

If  the first bracket  term here is zero, we get the consequence  that 

N N "  = A 1 N  + A2 N 2 + A3 

where the Ai are constants,  and if the second bracket  term is zero, we get 
the result that 

N N " =  M 1 N 2  + M2 N3 + M3 N 

where the Mi are constants.  We cannot  have both  relations holding,  since 

that implies that  N = const,  which implies that  N '  = 0, implying that  A1 = 0 = 
A2. So, we must  consider  separately the two cases coming from one or the 

other bracket  being nonzero.  Now, if the first bracket  term is assumed to 
be nonzero,  we are forced to the conclus ion  (after an addi t ional  differenti- 

at ion) that  either D ~ 0 or the derivative of the quot ient  of the brackets is 

zero. Now, D - 0 implies that  f---  0 (since c # 0), implying that h ~ 0, which 
yields a l  = ~ = a2, which is unacceptable ,  since it implies that N ~  oo with 

~:, so that the probabi l i ty  density is u n b o u n d e d .  6 We are forced then to the 
al ternative choice, which can then be shown to imply the relat ion 

N " =  A1 N N " +  A2 N + A 3  N 2 + A 4  (113) 

6 N o w ,  ~ = r  +f(rl, r2, f) a n d  a I = 1 -Of~Of. T h e r e f o r e ,  i f  a I = �89 = ot 2 ( f o r  a l l  q ,  r2) , of~of =�89 
implying that f=�89 r2) for some function I. Then, r =�89162 and then /31= 
al/art = a function of rx, r2. Therefore,/31 = -(cr2HiH2/r2)N'(~) is also a function of rl, rE. 
This implies that N'(f)/r  2= a function of rl, r2, so we may write r 2= p(r 1, r2)N'(f) for some 
function p(rl, r2). Now we have A l =ar/O~l = -(1/2r)p(rl, rz)N"(~ ). Further, equation (22) 
gives trA 1 = r~ fll/2m, implying that A 1 = -(cZr~r2H~H2/2mr)N(~). Comparing this with the 
above expression for A1, we conclude that 

c2r, r2HIH2 N , ( ~ ) = l p N  ,, 

implying that N"=AN' for some constant A, where A#0, since p~oo or c-~0 is not 
permissible, from earlier discussions. So we have N(~) = a e  A~ + b for some constants a and 
b, where a cannot be zero, since that would imply that N'(~) = 0, which implies that A~ = 0 = A 2. 
Thus, we have that N(f)~ ~ as A~ ~ co, giving an unbounded probability density, which we 
consider unacceptable. 
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where the Ai are constants. If, instead, the second bracket term in (112) is 
assumed to be nonzero, we face the choice of either C -= 0 or the derivative 
of the inverse ratio of the brackets being zero. C ---- 0 is ruled out, since it 
implies that c = 0, and the alternative then yields the relation 

N N "  = $1 N" + S 2 N + $3 N 2 + $4 

where the Si are constants; and we see that this is really the same as (113), 
resulting from the other alternative. Thus we have so far a single possibility, 
which we express as 0 =- A1 e + A26 + A3 3' + A4. Now, inserting the derivative 
of  this expression into (109) gives the relation 

6p ,~r 
( A + D A 3 ) + ( B + D A 2 ) _ + ( C + D A 1 )  - 0  (114) 

3' 7 -  

since 3" ~ 0. Repeating the previous process, we take derivatives here, giving 

(B+DA2)\--~,]  + ( C +  DA,)  = 0  (115) 

We have already established that 6'/y ') '  ~ O, so we obtain the relation, after 
one more differentiation, 

1(6 /3" )  J =-0 (116) 

Once again we are faced with the alternatives that either ( C + D A ~ ) - = 0  
and /o r  the bracket term is zero. The first choice can be shown to imply 
that f = -c2r~ r2/A~ m. But this implies that [see (103)] h = 0, which implies 

1 that al = ~ =  a2, which has been shown in footnote 6 to be unacceptable. 
So, we must have the bracket term vanishing, and this yields the relation 
e'  = A16'+ A23" for constants A-l, A=. Putting this back into (114) then gives, 
after one more differentiation, the relation 

(B + DA2+ A, C +.~, A, D) (6 ' /3" ) '= -  0 (117) 

Now here we only have one choice, since the bracket term has already been 
shown to be nonzero. Then, equating the expression in parentheses to zero 
gives the relation 

Alezrlr2 (118) 
f = m(c /Zm - A2 - A, A1) 

But this expression for f seems unacceptable, since it apparently implies 
that h = 0, which implies that cq = �89 = a 2. On the other hand, this expression 
must be correct, since it is our only choice. Thus, it must be that both 
numerator  and denominator  in the above expression are zero. So, we 
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conclude that A~=0 and A2=c/2m. And we then can write, after an 
integration, 

e =A2y+X3 (119) 

where ~-2, A3 are constants. In terms of N we then have the relation 

NN" = 3-z N2+ -~3 (120) 

as a necessary consequence of equation (104). This, then, is the equation 
governing N(~). We note that if A3~0, we have a difficult nonlinear 
differential equation to solve. However, we are saved from this problem by 
the following consistency consideration. Returning to (108) [from which 
(120) followed], we rewrite it by substituting in for 0 the expression given 
by (120), which then yields 

AN2+ BN + C(A~ N2 + A2)+ DN" = h 2-  E (121) 

From this we obtain, by another differentiation followed by division by 
N'  ~ 0, that 

2N(A + CA~) + B + ~ , '  D = 0 (122) 

One more differentiation and division by N '  then yields the relation 

2(A+ C~. I) 1 ( N " ] '  
D - N'  \ -~71 (123) 

since D r 0. From this relation we conclude that both sides must be constant, 
which then implies the relation N " =  M N ' N + S N ' ,  where M and S are 
constants. Finally, integrating this expression and multiplying it by N gives 

NN"= /17/N3 + SN2+ TN (124) 

where hT/, S, and T are constants. Now, this equation must be consistent 
with (120), since it is a consequence of (120) inserted into (108). But this 
consistency can only be achieved, as is seen by comparison, if M -= 0, T - 0, 
and A-3---0. That is, we must, in fact, have the equation on N(~:) as 

NN" = a N  2 (125) 

for some constant a. And dividing through by N (which must be nonzero, 
as we have seen before) finally gives, as the equation determining N(~:), 

N"= otN (126) 

where it must be that the constant a <0,  otherwise we would have an 
exponential solution, thereby producing an unbounded probability density. 
Thus, we can write 

N(~:) = a cos(v/-L--dsr + b) (127) 
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for some constants a and b, as the only possible solution for N(~:) compatible 
with our requirements. We now have 

r 2 = c2Arl r2 cos(x/Z-~:+ b) +f(r~, r2) (128) 

where A=- H i H 2 a / m .  
To complete our determination o f f  and N(sC), we employ one of  the 

very few equations that so far has not been used, namely the relation 

fl~ + 2too- OB~/ Or~ = 0 (129) 

coming from (41). Now, 

and 

and 

OBI 

Or~ 

3~p Amcr2 c--- �9 , r - - - ~ ,  

•1 Or1 -7 v - a  s m w - ~ r 1 7 7  (130) 

c2A ~ 1 Of (131) 
B, = ~ r2 cos(x/-as~+ b) + 2r arl. 

~ 2 

4r 3 orl_l zr Or~ (132) 

Putting these expressions into (129) then gives (with k==-x/c-d~+b) the 
relation 

M(r~, r2)+ P(rl ,  r2) cos 2 k+ Q(rl, r2) cos k = 0  (133) 

for all rl, r2, and ~: where 

- -2  2 2 2  m [ Oi "~2 m ~ a 2 f  
M = - - . A  rn c r~-Tc ~-~r,) +7Yar~ (134) 

P ~ ceA2m2c2r~_m c3A2r~ (135) 
2 

oj o7 
Q =- -mcAr2 - - +  mcArl r2 - -  (136) 

Or I Or 2 

Now, choosing k so that cos k = 0, gives M --- 0. Then dividing the remainder 
through by cos k (for cos k # 0) and then differentiating with respect to 
obviously implies that also P - 0  and Q--0 .  Considering Q - - 0  first, we 
have the relations 

o7 0i o7 V 
rl Or--Sl =Or--~l, r20r--~2=Or--~2 (137) 
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the second equation here resulting by replacing (129) with fl~+ 
2mtr  OB2/Or2 = O. It is not difficult to show that the general solution to these 
equations is of  the form f = A(r~+ r~)+ Ao, where A and Ao are constants] 
Further, from the requirement that r2(r2=O) = r~ we see that Ao=0 and 
A = 1. Thus we have 

f =  r~+ r~ (138) 

and f has been determined. 
Further, we now have from (103) that 

and therefore 

h 1 2 2 2 ( r ,  - r2) ( 1 3 9 )  

2 "~ 2 2 
( r ,  - -  r2) r~ -- r~ 

t~ I -  2 r  2 4-�89 t ~ 2 = -  2 r  2 4-�89 ( 1 4 0 )  

and also 

r 2 = c 2 A r l r 2 ~ _  L ,  t 2 ~ _  2~ (141) ~ , U S  / ~ T ~ r  I i t 2 I  

Next, considering P-= 0, we obtain the relation 

a = c / 2 m  (142) 

Finally, M - :  0 yields the relation 

( O f ~ 2 = a A 2 c 3 m r ~  (143) 1 

f OrT--2 \ O r l ]  

7Briefly, from equation (137) we obtain 02f/Oy 2 = 0, where y =- r 2. Then we can write f ( q ,  r2) = 
r2g(r2)+h(r2) for some functions g and h. By symmetry we must  also have f ( r l ,  r2)= 
r~k(q) + I(r I ) for some k and  I. Equating these two expressions gives h (0) = l(0). By separately 
placing q ,  r 2 to zero we then conclude that 

r2g(r2) + r~k(O) + i(0) = r2k(r,) + r2g(O) + h(O) 

from which we obtain 

g ( r 2 ) -  g(0) k (q ) -k (O)  
r~ r~ 

for  all r~, r 2. So each side o f  this equation must  be a constant,  say ~, since r t , r 2 are independent.  
If a ~ 0, we have g(r2) = ar~ + go and k( r  1) = ar21 +/%. This implies that 

f = r2(ar21+ /%) + l(rO = a~llr2 + /%r2 + gor21+ h o 

But this does not  satisfy the condition that y be  homogeneous  of  degree 2 as required by 

equation (102), unless a = 0. So  we must  have a = 0, which then implies, from the above, that 
g(r2) ~ g(0) --- goand  k (r 1) = k(0) ---/%. Therefore, f = r~ ko + rl2go + ho. Finally, the requirement 
that f(r~, r2)=f(r2, rl) [see equation (81)] implies that  /%=go and  we have f(q,  r 2 ) =  

go(~ + r2) + ho.  
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which, together with f = r~ + r~, gives the result aA2c3rn = 2, which, in turn, 
together with a = c/2m, implies that 

A C  2 = +2 (144) 

where we have adjusted the constant b in k so that the possible negative 
sign here need not be considered. We now have the relation 

r /  c \ ' / e  q 
r 2=r~+r 2 + 2 r l r 2 c o s [ t - ~ m )  ~ + b J  (145) 

and N(~:) has been completely determined. 
Now, expressing r as e = - 2 m / h  2 and using (139) to get the ai, and 

using the above expression found for N(~),  which gives the/3~, we have, 
finally, the following expression for q~ = ~(r~, re, () and r = r(r~, re, ~:): 

r 2 = rl 2 + r~ + 2r I r e cos 
( /7 2 - -  ~ 9 1  

and by an integration 

r2 sin(q~2- ~1) ~+qh  
~P = sin-1 {{ r~ + r~ + 2 rl r2 cos[(~p2 - ~1)/h ]}1/2j 

(146) 

(147) 

where we have redefined r and r by adding arbitrary constants to each, 
thereby canceling out the b that would otherwise appear in the argument 
of the cosine, and also thereby canceling the additive constant that would 
have appeared after ~Pl above. 

We recognize these equations as just the customary superposition 
relations of conventional quantum mechanics. 

3.4. The Hyperbolic Solution 

As an essential part of  the previous development we used the require- 
ment that N-> ~ with ~:, or N(~)  - e ~, was not to be allowed, since it leads 
to r2--> oo for certain limiting ~; i.e., it leads to an unbounded probability 
density. Disallowing such solutions forced us, among other things, to the 
customary superposition relations above of conventional quantum 
mechanics. It is of interest then to point out that for the choice N ( ~ ) =  
a cosh(~/h),  / z = ~ = A  =77=0,  o'=+(he/2rn)(1/r)  (i.e., c =  =+2rn/h2), 
and F = const [see (22)], all the 23 equations of superposition are again 
satisfied and we have superposition holding, with 

r 2 =  2 - -  (148) rl + r~ + 2rl r2 cosh ~2 - -  ~/31 
h 
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and 

q~ = sink-l{.{ r2sinh[(~P2-q~')/h] } 
rZ+r~+2rlrzcosh[(~z_q~O/h)]},/2 +~ (149) 

This "alternative" quantum theory is interesting and, as it turns out, displays 
many of the same qualitative features as does conventional quantum theory. 
This theory may be said to be characterized by a quantum potential of the 
opposite sign to that of conventional quantum theory. 

Just as conventional quantum theory may be expressed in terms of the 
variables ~=- r cos(~ /h)  andr /~  r sin(q~/h), thereby yielding the pair of 
real differential equations (equivalent to the Schr6dinger equation) 

h 2 h 2 

so then can the alternative quantum theory be expressed in terms of the 
variables g -  r cosh(p /h)  and ~ -= r sinh(q~/h), satisfying the equations 

h 2 
( 2 ~  V2+ V ) ~ = - h  0t~; (~mm gr2+ V ) ~ = - h  0,~ (151) 

We then see that both descriptions satisfy the linear superposition principle 
as well. However, conventional quantum theory satisfies the general linear 
superposition principle, as is easily shown by the substitution ~:~ a s  fir/, 
r/-> ar/+/3s c (for any real a,/3), whereas the alternative theory above does 
not. We note, of course, that in the alternative theory, r2> oo occurs for 
certain limiting values of ~:, which we regard as inadmissible. However, if 
one only uses wavefunctions here with bounded ~, and therefore ~, this 
problem is averted. We discuss this interesting possibility no further at this 
point. 

3.5. The Function F(r, ~) 

Before finishing our discussion, we must fully dispose of the function 
F. So far we have accounted only for almost all of its terms. There remains 
the matter of the scalar function, F(r, ~). With regard to F, then, consider 
two constituent solutions, where ~ = ~2 and r2 = e, where e is very small. 
Then (147) implies that ~ -~1  = n~-, for some integer n. Redefining ~ with 
an additive constant (which changes no physics) allows us to choose ~ = ~ 
here. Further, (146) gives us r 2 ~ r~(1 + 2e/r l)  and thus r ~ r~(1 + e/rl) .  Now, 

a,=�89 az~e/r, 

Looking back we see an additional equation that, so far, has not been 
stressed. It is equation (46'), 

F(r, ~o) = c,,F(r,, q~O+a2F(r2, ~2) (152) 
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For the special case we are now considering, this equation gives 

f ( r l + E , ~ , ) ~  - ~  f(rl,~l)+--f(e,~l)rl (153) 

Expanding the left-hand side in a Taylor series, we get 

F ( r , , q ~ , ) + e O F ~ ( 1 - ~  F(r, ,q~,)+eF(O,~pl) (154) 
Or1 \ r~ 

through first order in e, where we require that F(0, q~l) is defined as 
mentioned earlier [see the discussion after equation (22)]. The above 
equation then gives the relation 

OF F 1 
+-- F(0, r (155) 

Or I - -  rl rl 

The solution here is easily found to be 

F(rl,  @1)= A(qo,)/ri + F(0, q~1) (156) 

for some function A(qh). But this relation implies that, in fact, F(0, ~1) is 
not defined, which violates the basic requirement just mentioned concerning 
F. Thus, it must be that A(q~l) ~ 0, implying that F = F(q~t). 

We can now proceed to show that F cannot even depend on q~l, as 
follows. Choose rl =r2 and ~ 2 - ~ l  = e. Then the superposition relations 
already established imply that q~ = q~l+ e/2,  this being true for any e, small 
or not [this follows by considering addition of  solutions in the form 
r exp(iv~--a~)]. Now, rl = r2 implies that c~ =�89 a2 (this is acceptable for 
particular rl, r2; in contrast to footnote 6), so that (152) now gives, for any 

@1, @2 

F(q~l + e/2)  = �89 +�89 1 + e) (157) 

Now assume that e is small, and expand terms in a Taylor series through 
second-order terms in e. This gives 

e OF e 2 02F 1 OF e 2 02F 
q F(~Ol) +~ e - - 4 - - - - -  (158) F(@l)l-z; 0~1 8 0q~ 2 0~1 4 0r 

which implies that 02F/0r 2 = 0. Thus, we conclude that 

F = E~I + L (159) 

for some constants E and L. Now, equation (152) gives us 

Eq~ + L = al(E~pl + L) + a2(Er + L) (160) 
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which in turn gives 

E~ = E(oq ~, + a2~2) (161) 

I f  E ~ 0, we conclude that p = al  @1 "~ a2 @2 : l (~ t ) l  "~ @2) for all ~ ,  ~2. But 
this is unacceptable, since it contradicts (147). Therefore, we must have 
E = 0, which leaves us with F = const, which is then to be incorporated 
into the definition of the potential V. 

Very briefly summarizing the discussion in this section, it has been 
shown that F [through terms of second order and degree; see (22)] has 
been reduced to the following form as a consequence of the requirement 
of  superposition and bounded probability density: 

F =--1 V2 r (162) 
cr 

where c < 0. 
Also, the relations ~ = p(r~, rE, ~ ,  ~2) and r = r(rl, r2, q~l, q~2) have 

been shown necessarily to be the well-known superposition relations of  
customary quantum theory. 

3.6. Additions to r 

F is the most general invariant (under coordinate rotations and inver- 
sions) through quantities of  second order or degree in spatial differenti- 
ations that one could have. The question must now be considered as to 
whether this choice for F is too restrictive; i.e., can F be extended to include 
quantities of  the third or higher order or degree? We shall find that the 
requirement of superposition prevents this from being the case. To illustrate 
what is involved, we consider the addition of the term 

3 p~ 03~ 

(oxJ) 3 

to F, where p = p(r, ~o) is a scalar coefficient. This term is not an invariant 
(under coordinate inversion, for example) and therefore, technically, need 
not be considered; but it will be, since it is a very simple example of  the 
point that is to be made. Inclusion of this term in F will produce an additional 
contribution to (23) described by the term 

pA (n) _ ( 3 - - n ) f ~  • o ( n ) . ( 3 - - n ) / " n  03~ i 
cti q;i ~'.~na-P, "i ~-~n--aiPi(oxJ)3 (163) 

where the summation on i,j is from 1 to 2; the summation over n is from 
0 to 2; the superscripts in parentheses denote differentiations, so that 
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c~l")=-a"oq/ax s . . .  ax j (summed on j ) ,  and o~I ~ ai; and the (7. are con- 
stants given by 

C~ = for n = 1 

for n = 2  

and pi=- p( ri, r 
Now, as a special case, choose all ri = const, ~o 2 = const, and a ~ l / a X  1 = 

const=-yt .  Then the above contribution [i.e., (163)] becomes 
3, 3 a2oq/aqh O~Oa, or a2aa/aq~l a~oa. (O~ffaxl) 3. Looking at (23) for this case, 

we get the relation 

M11\0X1,] a{~l a(~l k~Xl  ] = 0 (164) 

We see that the gradient factors do not cancel, since they are of different 
degrees, so we obtain the superposition equation 

020/1 0~1 
,32~ 1 1 "~- - -  0 (165) 

a~ l  a~ l  ax  1 

instead of the relation a/aa = 0 that we obtained earlier without the additional 
term in F. But we see that the above relation is not universal, since it depends 
explicitly on the spatial properties of ~1. 

From this example we see that whenever higher order or degree terms 
are added on to F, they will, for certain choices of  the r; and ~o~, lead to 
relations whe re  not all the gradient terms in ~ or r will cancel. This is 
merely because they are not all of  the same degree (or order) as they were 
before the addition of other terms to F. In fact, for any choice of the r~ and 
q~i that leaves some of the terms present from both second and higher order 
contributions one must end up with nonuniversal relations; and the presence 
of  such relations contradicts the universality inherent in the notion of 
superposition. 

Hence, the F discussed in this section 3 [equation (22)] is the most 
general one possible; i.e., is the most general one capable of being consistent 
with superposition. 

4. D I S C U S S I O N  

The development in Section 3 was so lengthy that it should be helpful 
to summarize and point out the highlights of  just what was accomplished 
there. In brief, the following development occurred. We assumed that the 
stochastic velocity was irrotational, describing quantum phenomena by a 
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dynamic equation of the form (where B depends on the state of the system, 
but not on its time derivative) 

dv 
m-~-~= B (166) 

together with the continuity equation. Even though the above relation seems 
most reasonable, we note that it is an assumption; it need not be so. For 
example, we could conceivably have a relation of the form m d2v/dt2= C, 
where C depends on the system state (and not on its time derivative). Or 
we might have some nonlocal integral form involving v on the left-hand 
side of the relation instead. However, it would be difficult imagining how 
such descriptions could yield an average behavior characterized by Newton's 
law of inertia. Next, assuming that v is irrotational, we derived the relation 

(Vq~)2 ~- V + F =  -~p,~ (167) 
2m 

where we momentarily assumed a certain restricted form for F. Now, the 
requirement of superposition together with the requirements that r 2 should 
be bounded led to the result that F = VZr/or, where c < 0. It was then shown 
that this form for F was generally valid if superposition were to hold. In 
effect, then, the few assumptions used, together with that of superposition, 
were shown to imply the relations 

(Vq~)2 I- V + I  v2r = -~ , t  (168) 
2m cr 

and 

V. (r 2 V~)+  mr~r =0  (169) 

even when the above restriction on F was dropped. However, letting c-! = 
- h2 /2m ,  these two equations are seen to be equivalent to the single equation 

h 2 
( - ~ m  V2+ V ) ~ =  ih 0 ,~  (170) 

where xp=_ r exp[(i/h)q~]. Thus, the Schr6dinger equation is recovered. 
Finally, it was also shown that the relations ~ = ~(rl ,  r2, qh, ~o2) and 

r = r(r~, r2, ~ ,  ~P2) are none other than the well-known superposition rela- 
tions of ordinary quantum mechanics. 

In the final section, we will show that the assumption that v is irrotational 
need not be made in the above development, since we make a compelling 
argument to prove that rotational v cannot satisfy the superposition prin- 
ciple. Thus, the conclusion, equation (170), follows without the proviso 
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that v be irrotational. The Schr/Sdinger equation will then have been founded 
on the assumptions that dv/dt = function of state, where v is nonuniquely 
defined by the continuity relation, r 2 is bounded, and the superposition 
principle holds. 

5. GENERALIZED QUANTUM MECHANICS 

Up to this point we have given a compelling demonstration that the 
only quantum theory--with an irrotational velocity field--consistent with 
superposition and a few other stipulations is the conventional Schr6dinger 
quantum description. We shall extend this conclusion to cover the case 
where the stochastic velocity need not be irrotational. 

Again, we take the dynamic equation to be 

dv 
m~-~:B (171) 

where 

1 
v = - - V ~ + A  (172) 

m 

is the (now assumed rotational) stochastic velocity field, which is again 
(nonuniquely) defined by the continuity equation 

V. (r2v) + r2t = 0 (173) 

Here, ~ is some unspecified scalar function, and A is an unspecified 
solenoidal vector field. Again, B is a vector field somehow depending on 
the system state (i.e., on r, ~, A), but not on its time derivative. Inserting 
the expression (172) into the two equations above then gives the relations 
governing the description as 

V [~m (V~)2+0t~p] +(V~.  V)A+(A.  V)V~ + m(A. V)A+ m 0,A= B 

(174) 

and 

mr2m V2q~+lVr 'V~~ (175) 

Now, let us investigate the consequence of the superposition principle 
holding for the continuity equation (175) in a simple case: We assume that 
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the component  solutions are such that Vr.  = 0 = Vr  for a = 1, 2. For the 
superposed state r, ~o, A we have in general 

r = q~(r~, r2, r ~2, A(1), A(2)) 

r = r(r~, r2, ~1, ~02, A ~',  A <2)) 

A = A(rl, r2, r ~2, A <~), A (2)) 

since the vector fields A, A (~) now form part of  the description of the state 
of  the system. (Note that we shall use Greek indices going from 1 to 2 to 
indicate the component  systems and Latin indices going from 1 to 3 to 
indicate vector components.) Further, we write 

V ~ -  o~ v A ( ~ ) _ ~  VAI~) (176) - (~) - , - i  = 
OA~ 

where no other terms enter here on the right-hand side because we are 
choosing Vr~---0=Vr for a = 1, 2. Also, the summation convention, on 
all indices, Greek and Latin, is used throughout. We also have 

= ~ V A I  ~) ?dip VAI ~) (177) Vr O A f )  �9 =- 

and we also have expressions similar to the above for q~,t and r t, respectively. 
Putting these expressions into (175) gives 

J \ 2 m O A J  t3) m ~i"'/r 2m 

+Ni~ VA~ ~)" A+2('i=AIT)+ Or Or 2--- ~p~, ,+- -  r~ t = 0 (178) 
" o ~ , ~  Or,~ " 

As in the case where v was purely irrotational, the next thing we would like 
to do here is to reexpress the time derivatives above in terms of spatial 
derivatives by using the original equations (174) and (175) for the component  
solutions [see the discussion before equation (8)]. But in the present case 
this willl lead to difficulty, as we now discuss. In order to express the A ~ , t  

and ~r in terms of spatial quantities, we proceed as follows. The dynamic 
equation (174) governing each component  solution has the form 0, Vq~ + 
rn O,A ~) = b ~) for some vector field b depending only on spatial derivatives. 
Taking divergences, and remembering that A ~) is solenoidal, we have 
V 2 O,~o~ = V �9 b ('~), which then yields the relation 

1 f V �9 b (~)  
0,q~ =-4-- ~ J - ~ - ~ -  dx '  (179) 

Again, taking the curl of  the above expression, we obtain m O,V x A r = 
V x b r Now setting A r V x S ~ for some S <~ and further gauging S r 
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so that V �9 S (")= O, we obtain - m  OtV2S (a)-~- V x b (~ which finally implies 
that 

f Vxb(- )  �9 1 V x  - - d x '  (180)  
O' A(") = 41rm Ix ' -x l  

We see that the relations connecting ~,,t and Ot A to spatial derivatives are 
nonlocal. When these nonlocal expressions are substituted into (178) for 
the A(") and ~,,,(r,,t = 0 in our special case), we end up with a relation 
involving terms with the usual factors, V2A~ "), VAI ") . V A ) m , . . . ,  as well 
as the above nonlocal expressions. However, there is generally no way that 
these local and nonlocal expressions can cancel each other to yield the 
universal relations demanded by superposition. It is conceivable that certain 
functional choices for the A (") might allow a partial cancellation with the 
result depending on the particular functional form chosen for the A ("). 
However, this is unsatisfactory, as we noted before. Or, in certain circum- 
stances, these nonlocal expressions might, in fact, reduce to local ones. For 
example, if b (~) = VX (~) for some scalar function X (~), then we have that 

1 f V2X(~) 
0t~p~ = - 4---- ~ ~7-S--~ dx'  = X (~) (181) 

In fact, this is precisely the way we would recapture the A---0 description 
(already discussed in Section 3) from the present one. However, b (") = VX (") 
implies that 0 ,A(")=0,  according to (180), so the A (") and A would 
necessarily be constant in time. But if the A (") are not spatially constant as 
well, then the b (") are seen to be not identically given as the gradient of 
any function of the system state, so the relation b (") = Vq, (") becomes another 
condition that must be satisfied. This means that we have five unknowns 
(r, q~, and three components of A) and eight equations, consisting of  the 
continuity relation, V �9 A=-O, m d v / d t  = B, and b = VX; and this is unsatis- 
factory. Finally, if the A, A (") are constant (in space and time), v is again 
irrotational. We therefore see that the assumption A # const leads to grave 
problems if superposition is to hold�9 We therefore conclude that A-=0 
(A = const, is equivalent to A -  0 with another choice of ~o) and we see then 
that only an irrotational v can reasonably be compatible with the superposi- 
tion principle. 
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